Suppr超能文献

蜱传脑炎病毒脆弱的传播循环可能会因预测的气候变化而被破坏。

Fragile transmission cycles of tick-borne encephalitis virus may be disrupted by predicted climate change.

作者信息

Randolph S E, Rogers D J

机构信息

Department of Zoology, University of Oxford, UK.

出版信息

Proc Biol Sci. 2000 Sep 7;267(1454):1741-4. doi: 10.1098/rspb.2000.1204.

Abstract

Repeated predictions that vector-borne disease prevalence will increase with global warming are usually based on univariate models. To accommodate the full range of constraints, the present-day distribution of tick-borne encephalitis virus (TBEv) was matched statistically to current climatic variables, to provide a multivariate description of present-day areas of disease risk. This was then applied to outputs of a general circulation model that predicts how climatic variables may change in the future, and future distributions of TBEv were predicted for them. The expected summer rise in temperature and decrease in moisture appears to drive the distribution of TBEv into higher-latitude and higher-altitude regions progressively through the 2020s, 2050s and 2080s. The final toe-hold in the 2080s may be confined to a small part of Scandinavia, including new foci in southern Finland. The reason for this apparent contraction of the range of TBEv is that its transmission cycles depend on a particular pattern of tick seasonal dynamics, which may be disrupted by climate change. The observed marked increase in incidence of tick-borne encephalitis in most parts of Europe since 1993 may be due to non-biological causes, such as political and sociological changes.

摘要

关于媒介传播疾病的患病率将随着全球变暖而增加的反复预测通常基于单变量模型。为了考虑到所有的限制因素,对蜱传脑炎病毒(TBEv)的当前分布与当前气候变量进行了统计学匹配,以提供对当前疾病风险区域的多变量描述。然后将其应用于一个通用循环模型的输出结果,该模型预测了未来气候变量可能如何变化,并据此预测了TBEv的未来分布。预计到21世纪20年代、50年代和80年代,夏季气温升高和湿度降低似乎会逐步将TBEv的分布推向更高纬度和更高海拔地区。到21世纪80年代,其最后的据点可能局限于斯堪的纳维亚半岛的一小部分地区,包括芬兰南部的新疫源地。TBEv分布范围出现这种明显收缩的原因是,其传播周期依赖于蜱季节性动态的特定模式,而这种模式可能会被气候变化打乱。自1993年以来,在欧洲大部分地区观察到的蜱传脑炎发病率显著上升可能是由于非生物学原因,如政治和社会变化。

相似文献

1
Fragile transmission cycles of tick-borne encephalitis virus may be disrupted by predicted climate change.
Proc Biol Sci. 2000 Sep 7;267(1454):1741-4. doi: 10.1098/rspb.2000.1204.
2
Predicting the risk of tick-borne diseases.
Int J Med Microbiol. 2002 Jun;291 Suppl 33:6-10. doi: 10.1016/s1438-4221(02)80002-9.
3
Increased Relative Risk of Tick-Borne Encephalitis in Warmer Weather.
Front Cell Infect Microbiol. 2018 Mar 22;8:90. doi: 10.3389/fcimb.2018.00090. eCollection 2018.
4
Risk of exposure to ticks (Ixodidae) and the prevalence of tick-borne encephalitis virus (TBEV) in ticks in Southern Poland.
Ticks Tick Borne Dis. 2015 Apr;6(3):356-63. doi: 10.1016/j.ttbdis.2015.02.010. Epub 2015 Mar 30.
5
Seasonal dynamics of Ixodes ricinus in a 3-year period in northern Spain: first survey on the presence of tick-borne encephalitis virus.
Vector Borne Zoonotic Dis. 2010 Dec;10(10):1027-35. doi: 10.1089/vbz.2009.0148. Epub 2010 May 10.
6
Microclimate and the zoonotic cycle of tick-borne encephalitis virus in Switzerland.
J Med Entomol. 2011 May;48(3):615-27. doi: 10.1603/me10180.
7
The potential impact of climate change on the transmission risk of tick-borne encephalitis in Hungary.
BMC Infect Dis. 2020 Jan 13;20(1):34. doi: 10.1186/s12879-019-4734-4.
8
Ixodid ticks and tick-borne encephalitis virus prevalence in the South Asian part of Russia (Republic of Tuva).
Ticks Tick Borne Dis. 2019 Aug;10(5):959-969. doi: 10.1016/j.ttbdis.2019.04.019. Epub 2019 Apr 26.
9
Identification of tick-borne encephalitis virus in ticks collected in southeastern Hungary.
Ticks Tick Borne Dis. 2013 Sep;4(5):427-31. doi: 10.1016/j.ttbdis.2013.04.008. Epub 2013 Jul 13.
10
Survival dynamics of tick-borne encephalitis virus in Ixodes ricinus ticks.
Ticks Tick Borne Dis. 2014 Oct;5(6):962-9. doi: 10.1016/j.ttbdis.2014.07.019. Epub 2014 Aug 12.

引用本文的文献

1
Multiple variants of tick-borne encephalitis virus in voles, mice and ticks, the Netherlands, 2021 to 2023.
Euro Surveill. 2025 Jan;30(4). doi: 10.2807/1560-7917.ES.2025.30.4.2400247.
3
Differential susceptibility of geographically distinct populations to tick-borne encephalitis virus and louping ill virus.
Emerg Microbes Infect. 2024 Dec;13(1):2321992. doi: 10.1080/22221751.2024.2321992. Epub 2024 Mar 14.
4
High habitat richness reduces the risk of tick-borne encephalitis in Europe: A multi-scale study.
One Health. 2023 Dec 30;18:100669. doi: 10.1016/j.onehlt.2023.100669. eCollection 2024 Jun.
5
Outdoor recreation, tick borne encephalitis incidence and seasonality in Finland, Norway and Sweden during the COVID-19 pandemic (2020/2021).
Infect Ecol Epidemiol. 2023 Nov 18;13(1):2281055. doi: 10.1080/20008686.2023.2281055. eCollection 2023.
6
Epidemiological Trends of Trans-Boundary Tick-Borne Encephalitis in Europe, 2000-2019.
Pathogens. 2022 Jun 18;11(6):704. doi: 10.3390/pathogens11060704.

本文引用的文献

1
Comparative ecology and epidemiology of lyme disease and tick-borne encephalitis in the former Soviet Union.
Parasitol Today. 1994 Apr;10(4):157-60. doi: 10.1016/0169-4758(94)90269-0.
3
Survival strategy of tick-borne encephalitis virus: cellular basis and environmental determinants.
Zentralbl Bakteriol. 1999 Dec;289(5-7):513-24. doi: 10.1016/s0934-8840(99)80005-x.
6
Predicting the distribution of tsetse flies in West Africa using temporal Fourier processed meteorological satellite data.
Ann Trop Med Parasitol. 1996 Jun;90(3):225-41. doi: 10.1080/00034983.1996.11813049.
8
Vector-borne diseases, models, and global change.
Lancet. 1993 Nov 20;342(8882):1282-4. doi: 10.1016/0140-6736(93)92367-3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验