Public Health Risk Sciences Division, National Microbiology Laboratory, Public Health Agency of Canada, St-Hyacinthe, QC, Canada.
Groupe de recherche en épidémiologie des zoonoses et santé publique (GREZOSP), Faculté de médecine vétérinaire, Université de Montréal, St-Hyacinthe, QC, Canada.
J Med Entomol. 2021 Jul 16;58(4):1536-1545. doi: 10.1093/jme/tjaa220.
The global climate has been changing over the last century due to greenhouse gas emissions and will continue to change over this century, accelerating without effective global efforts to reduce emissions. Ticks and tick-borne diseases (TTBDs) are inherently climate-sensitive due to the sensitivity of tick lifecycles to climate. Key direct climate and weather sensitivities include survival of individual ticks, and the duration of development and host-seeking activity of ticks. These sensitivities mean that in some regions a warming climate may increase tick survival, shorten life-cycles and lengthen the duration of tick activity seasons. Indirect effects of climate change on host communities may, with changes in tick abundance, facilitate enhanced transmission of tick-borne pathogens. High temperatures, and extreme weather events (heat, cold, and flooding) are anticipated with climate change, and these may reduce tick survival and pathogen transmission in some locations. Studies of the possible effects of climate change on TTBDs to date generally project poleward range expansion of geographical ranges (with possible contraction of ranges away from the increasingly hot tropics), upslope elevational range spread in mountainous regions, and increased abundance of ticks in many current endemic regions. However, relatively few studies, using long-term (multi-decade) observations, provide evidence of recent range changes of tick populations that could be attributed to recent climate change. Further integrated 'One Health' observational and modeling studies are needed to detect changes in TTBD occurrence, attribute them to climate change, and to develop predictive models of public- and animal-health needs to plan for TTBD emergence.
在过去的一个世纪里,由于温室气体排放,全球气候一直在发生变化,如果没有全球各国有效减少排放的努力,这种变化将在本世纪继续加速。蜱虫和蜱传疾病(TTBDs)由于蜱虫的生命周期对气候敏感,因此本质上是对气候敏感的。关键的直接气候和天气敏感性包括单个蜱虫的生存能力,以及蜱虫的发育和宿主寻找活动的持续时间。这些敏感性意味着,在某些地区,气候变暖可能会增加蜱虫的生存能力,缩短生命周期,并延长蜱虫活动季节的持续时间。宿主群落中气候变化的间接影响可能会随着蜱虫数量的变化,促进蜱传病原体的传播。预计气候变化会带来高温和极端天气事件(热、冷和洪水),这些可能会降低某些地区的蜱虫生存能力和病原体传播能力。迄今为止,关于气候变化对 TTBDs 可能影响的研究一般预测地理范围的极向范围扩大(可能远离越来越热的热带地区范围缩小),山区海拔范围的上坡扩展,以及许多当前流行地区蜱虫数量的增加。然而,只有少数研究使用长期(数十年)观测数据提供了最近蜱虫种群范围变化的证据,这些变化可能归因于最近的气候变化。需要进一步开展综合性的“One Health”观测和建模研究,以发现 TTBD 发生的变化,将其归因于气候变化,并开发公共卫生和动物卫生需求的预测模型,以规划 TTBD 的出现。