Sullivan David J
The Malaria Research Institute, W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA.
Int J Parasitol. 2002 Dec 4;32(13):1645-53. doi: 10.1016/s0020-7519(02)00193-5.
Haeme metabolism remains a vulnerable problem for the intraerythrocytic Plasmodium which catabolises haemoglobin as a source of amino acids in an acidic, oxygen-rich lysosome-like digestive vacuole. Haeme monomer, capable of generating oxygen radicals, transforms into an inert crystal named malarial pigment or haemozoin by forming unique dimers that then crystalise. Laveran first described pigmented bodies in humans to define a protozoan as the aetiologic agent of malaria. The trail of malaria pigment enabled Ross to implicate the mosquito in the life cycle of Plasmodium. In 1991, Slater and Cerami postulated a unique iron-carboxylate bond between two haemes in haemozoin crystals based on infrared and X-ray spectroscopy data. Additionally, parasite extracts were shown to possess a 'haeme polymerase' enzymatic activity as the process of crystal formation was then termed. Importantly, the quinolines, such as choloroquine, inhibit haemozoin formation. A Plasmodium falciparum derived histidine-rich protein II, which binds haeme and initiates haemozoin formation, is present in the digestive vacuole. Pfhistidine-rich protein II and Pfhistidine-rich protein III are sufficient, but not necessary for haemozoin formation as a laboratory clone lacking both still makes the haeme crystals. The reduvid bug, and the Schistosoma and Haemoproteus genera also make haemozoin. Recently, Bohle and coworkers used X-ray diffraction to document the iron-carboxylate bond in intact desiccated parasites and to show that a Fe1-O41 head to tail haeme dimer is the unit building block of haemozoin. The role of the Plasmodium histidine-rich protein family members, lipids or potential novel proteins in the exact molecular assembly of the large molecular weight haeme crystals in the protein rich digestive vacuole needs to be solved. Accurate experimental determination of the role of haemozoin formation and inhibition as the target of chloroquine is fundamental to determination of the mechanism of quinoline drug action and resistance. The enhanced understanding of the biosynthetic pathway leading to haemozoin formation using functional proteomic tools and the mechanisms through which existing antimalarial drugs affect Plasmodium haeme chemistry will help design improved chaemotherapeutic agents.
血红素代谢对于红细胞内的疟原虫来说仍然是一个棘手的问题,疟原虫在酸性、富氧的类似溶酶体的消化泡中将血红蛋白分解代谢以获取氨基酸。能够产生氧自由基的血红素单体通过形成独特的二聚体,然后结晶,转化为一种惰性晶体,即疟色素或疟原虫血色素。拉韦朗首次在人类中描述了色素体,从而确定原生动物是疟疾的病原体。疟色素的踪迹使罗斯能够证明蚊子在疟原虫的生命周期中的作用。1991年,斯莱特和塞拉米根据红外和X射线光谱数据推测疟原虫血色素晶体中两个血红素之间存在独特的铁 - 羧酸盐键。此外,由于当时将晶体形成过程称为“血红素聚合酶”酶活性,所以寄生虫提取物被证明具有这种活性。重要的是,喹啉类药物,如氯喹,可抑制疟原虫血色素的形成。一种源自恶性疟原虫的富含组氨酸的蛋白质II存在于消化泡中,它能结合血红素并启动疟原虫血色素的形成。富含组氨酸的蛋白质II和富含组氨酸的蛋白质III对于疟原虫血色素的形成是足够的,但不是必需的,因为一个同时缺乏这两种蛋白质的实验室克隆仍然能形成血红素晶体。猎蝽以及血吸虫属和血变形虫属也能产生疟原虫血色素。最近,博勒及其同事利用X射线衍射记录了完整干燥寄生虫中的铁 - 羧酸盐键,并表明Fe1 - O41头尾血红素二聚体是疟原虫血色素的单位结构单元。疟原虫富含组氨酸的蛋白质家族成员、脂质或潜在的新蛋白质在富含蛋白质的消化泡中对大分子量血红素晶体的确切分子组装中的作用仍有待解决。准确实验确定疟原虫血色素形成和抑制作为氯喹靶点的作用,对于确定喹啉类药物作用和耐药机制至关重要。利用功能蛋白质组学工具深入了解导致疟原虫血色素形成的生物合成途径以及现有抗疟药物影响疟原虫血红素化学的机制,将有助于设计出更有效的化疗药物。