Hansen Carl L, Skordalakes Emmanuel, Berger James M, Quake Stephen R
Department of Applied Physics, California Institute of Technology, MS 128-95, Pasadena, CA 91125, USA.
Proc Natl Acad Sci U S A. 2002 Dec 24;99(26):16531-6. doi: 10.1073/pnas.262485199. Epub 2002 Dec 16.
Producing robust and scalable fluid metering in a microfluidic device is a challenging problem. We developed a scheme for metering fluids on the picoliter scale that is scalable to highly integrated parallel architectures and is independent of the properties of the working fluid. We demonstrated the power of this method by fabricating and testing a microfluidic chip for rapid screening of protein crystallization conditions, a major hurdle in structural biology efforts. The chip has 480 active valves and performs 144 parallel reactions, each of which uses only 10 nl of protein sample. The properties of microfluidic mixing allow an efficient kinetic trajectory for crystallization, and the microfluidic device outperforms conventional techniques by detecting more crystallization conditions while using 2 orders of magnitude less protein sample. We demonstrate that diffraction-quality crystals may be grown and harvested from such nanoliter-volume reactions.
在微流控设备中实现稳健且可扩展的流体计量是一个具有挑战性的问题。我们开发了一种用于皮升规模流体计量的方案,该方案可扩展至高度集成的并行架构,并且与工作流体的特性无关。我们通过制造和测试用于快速筛选蛋白质结晶条件的微流控芯片(这是结构生物学研究中的一个主要障碍),展示了该方法的强大功能。该芯片有480个有源阀,可进行144个平行反应,每个反应仅使用10 nl的蛋白质样品。微流控混合的特性允许形成高效的结晶动力学轨迹,并且该微流控设备在检测更多结晶条件的同时,使用的蛋白质样品量减少了两个数量级,优于传统技术。我们证明可以从此类纳升体积的反应中生长并收获衍射质量的晶体。