Suppr超能文献

一种用于芯片内透析蛋白质结晶和原位 X 射线衍射的微流控装置。

A microfluidic device for both on-chip dialysis protein crystallization and in situ X-ray diffraction.

机构信息

Université Grenoble Alpes, CEA, CNRS, IBS, F-38000 Grenoble, France.

CNRS, Solvay, LOF, UMR 5258, Univ. Bordeaux, F-33600 Pessac, France.

出版信息

Lab Chip. 2020 Jan 21;20(2):296-310. doi: 10.1039/c9lc00651f. Epub 2019 Dec 5.

Abstract

This paper reports a versatile microfluidic chip developed for on-chip crystallization of proteins through the dialysis method and in situ X-ray diffraction experiments. A microfabrication process enabling the integration of regenerated cellulose dialysis membranes between two layers of the microchip is thoroughly described. We also describe a rational approach for optimizing on-chip protein crystallization via chemical composition and temperature control, allowing the crystal size, number and quality to be tailored. Combining optically transparent microfluidics and dialysis provides both precise control over the experiment and reversible exploration of the crystallization conditions. In addition, the materials composing the microfluidic chip were tested for their transparency to X-rays in order to assess their compatibility for in situ diffraction data collection. Background scattering was evaluated using a synchrotron X-ray source and the background noise generated by our microfluidic device was compared to that produced by commercial crystallization plates used for diffraction experiments at room temperature. Once crystals of 3 model proteins (lysozyme, IspE, and insulin) were grown on-chip, the microchip was mounted onto the beamline and partial diffraction data sets were collected in situ from several isomorphous crystals and were merged to a complete data set for structure determination. We therefore propose a robust and inexpensive way to fabricate microchips that cover the whole pipeline from crystal growth to the beam and does not require any handling of the protein crystals prior to the diffraction experiment, allowing the collection of crystallographic data at room temperature for solving the three-dimensional structure of the proteins under study. The results presented here allow serial crystallography experiments on synchrotrons and X-ray lasers under dynamically controllable sample conditions to be observed using the developed microchips.

摘要

本文报道了一种多功能微流控芯片,通过透析法和原位 X 射线衍射实验实现蛋白质的芯片结晶。本文详细描述了一种微加工工艺,该工艺能够在微芯片的两层之间集成再生纤维素透析膜。我们还描述了一种通过化学成分和温度控制优化芯片上蛋白质结晶的合理方法,使晶体的大小、数量和质量能够得到定制。结合光学透明微流控和透析,既可以对实验进行精确控制,又可以对结晶条件进行可逆探索。此外,还对构成微流控芯片的材料进行了 X 射线透明性测试,以评估其用于原位衍射数据收集的兼容性。使用同步加速器 X 射线源评估了背景散射,并且将我们的微流控设备产生的背景噪声与用于室温下衍射实验的商业结晶板产生的背景噪声进行了比较。当在芯片上生长出 3 种模型蛋白质(溶菌酶、IspE 和胰岛素)的晶体后,将微芯片安装在光束线上,并从几个同构晶体中进行原位收集部分衍射数据集,并将其合并为完整数据集,用于结构测定。因此,我们提出了一种制造微芯片的稳健且廉价的方法,该方法涵盖了从晶体生长到光束的整个过程,并且在衍射实验之前不需要对蛋白质晶体进行任何处理,允许在室温下收集晶体学数据,以解决正在研究的蛋白质的三维结构问题。这里呈现的结果允许在同步加速器和 X 射线激光器上进行动态可控样品条件下的连续结晶实验,使用开发的微芯片进行观察。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验