Huang Y, Lisboa P J G, El-Deredy W
School of Computing and Mathematical Sciences, Liverpool John Moores University, Byrom Street, Liverpool L3 3AF, UK.
Stat Med. 2003 Jan 15;22(1):147-64. doi: 10.1002/sim.1321.
Magnetic resonance spectroscopy (MRS) provides a non-invasive measurement of the biochemistry of living tissue. However, signal variation due to tissue heterogeneity causes considerable mixing between different disease categories, making accurate class assignments difficult. This paper compares a systematic methodology for classifier design using multivariate bayesian variable selection (MBVS), with one based on feature extraction using independent component analysis (ICA). We illustrate the methodology and assess the classification performance using a data set comprising 41 magnetic resonance spectra acquired in vivo from two grades of brain tumour, namely low- and medium-grade astrocytic tumours, labelled astrocytomas (AST), and high-grade gliomas and glioblastomas labelled glioblastomas (GL). The aim of this study is threefold. First, to describe the application of the alternative methodologies to MRS, then to benchmark their classification performance, and finally to interpret the classification models in terms of biologically relevant signals derived from the spectra. The classification performance is assessed using the bootstrap method and by application to a test sample in a retrospective study.
磁共振波谱学(MRS)可对活体组织的生物化学进行非侵入性测量。然而,由于组织异质性导致的信号变化会使不同疾病类别之间出现大量混淆,从而难以进行准确的类别划分。本文比较了一种使用多变量贝叶斯变量选择(MBVS)进行分类器设计的系统方法与一种基于独立成分分析(ICA)特征提取的方法。我们使用一个包含41个体内磁共振波谱的数据集来说明该方法并评估分类性能,这些波谱来自两种脑肿瘤级别,即低级别和中级别的星形细胞瘤,标记为星形细胞瘤(AST),以及高级别胶质瘤和胶质母细胞瘤,标记为胶质母细胞瘤(GL)。本研究的目的有三个方面。首先,描述替代方法在MRS中的应用,其次,对它们的分类性能进行基准测试,最后,根据从波谱中得出的生物学相关信号来解释分类模型。使用自助法并通过在回顾性研究中应用于测试样本评估分类性能。