Suppr超能文献

通过X射线溶液散射为蛋白质模型添加缺失的环和结构域。

Addition of missing loops and domains to protein models by x-ray solution scattering.

作者信息

Petoukhov Maxim V, Eady Nigel A J, Brown Katherine A, Svergun Dmitri I

机构信息

European Molecular Biology Laboratory, Hamburg Outstation, D-22603 Hamburg, Germany.

出版信息

Biophys J. 2002 Dec;83(6):3113-25. doi: 10.1016/S0006-3495(02)75315-0.

Abstract

Inherent flexibility and conformational heterogeneity in proteins can often result in the absence of loops and even entire domains in structures determined by x-ray crystallographic or NMR methods. X-ray solution scattering offers the possibility of obtaining complementary information regarding the structures of these disordered protein regions. Methods are presented for adding missing loops or domains by fixing a known structure and building the unknown regions to fit the experimental scattering data obtained from the entire particle. Simulated annealing was used to minimize a scoring function containing the discrepancy between the experimental and calculated patterns and the relevant penalty terms. In low-resolution models where interface location between known and unknown parts is not available, a gas of dummy residues represents the missing domain. In high-resolution models where the interface is known, loops or domains are represented as interconnected chains (or ensembles of residues with spring forces between the C(alpha) atoms), attached to known position(s) in the available structure. Native-like folds of missing fragments can be obtained by imposing residue-specific constraints. After validation in simulated examples, the methods have been applied to add missing loops or domains to several proteins where partial structures were available.

摘要

蛋白质固有的灵活性和构象异质性常常导致在通过X射线晶体学或核磁共振方法确定的结构中缺少环甚至整个结构域。X射线溶液散射提供了获得有关这些无序蛋白质区域结构的补充信息的可能性。本文介绍了通过固定已知结构并构建未知区域以拟合从整个粒子获得的实验散射数据来添加缺失环或结构域的方法。使用模拟退火来最小化一个评分函数,该函数包含实验模式和计算模式之间的差异以及相关的惩罚项。在低分辨率模型中,已知部分和未知部分之间的界面位置不可用时,虚拟残基气体代表缺失的结构域。在已知界面的高分辨率模型中,环或结构域表示为相互连接的链(或在Cα原子之间具有弹簧力的残基集合),连接到可用结构中的已知位置。通过施加残基特异性约束可以获得缺失片段的天然样折叠。在模拟示例中经过验证后,这些方法已应用于为几种具有部分结构的蛋白质添加缺失的环或结构域。

相似文献

1
Addition of missing loops and domains to protein models by x-ray solution scattering.
Biophys J. 2002 Dec;83(6):3113-25. doi: 10.1016/S0006-3495(02)75315-0.
2
Global rigid body modeling of macromolecular complexes against small-angle scattering data.
Biophys J. 2005 Aug;89(2):1237-50. doi: 10.1529/biophysj.105.064154. Epub 2005 May 27.
3
Determination of domain structure of proteins from X-ray solution scattering.
Biophys J. 2001 Jun;80(6):2946-53. doi: 10.1016/S0006-3495(01)76260-1.
4
Protein hydration in solution: experimental observation by x-ray and neutron scattering.
Proc Natl Acad Sci U S A. 1998 Mar 3;95(5):2267-72. doi: 10.1073/pnas.95.5.2267.
5
Structure and flexibility within proteins as identified through small angle X-ray scattering.
Gen Physiol Biophys. 2009 Jun;28(2):174-89. doi: 10.4149/gpb_2009_02_174.
7
Structural analysis of flexible proteins in solution by small angle X-ray scattering combined with crystallography.
J Struct Biol. 2007 May;158(2):214-23. doi: 10.1016/j.jsb.2006.09.008. Epub 2006 Oct 27.
8
Experimental approaches for solution X-ray scattering and fiber diffraction.
Curr Opin Struct Biol. 2008 Oct;18(5):601-8. doi: 10.1016/j.sbi.2008.08.002. Epub 2008 Sep 29.
9
A practical guide to small angle X-ray scattering (SAXS) of flexible and intrinsically disordered proteins.
FEBS Lett. 2015 Sep 14;589(19 Pt A):2570-7. doi: 10.1016/j.febslet.2015.08.027. Epub 2015 Aug 29.

引用本文的文献

2
Current approaches to flexible loop modeling.
Curr Res Struct Biol. 2021 Aug 5;3:187-191. doi: 10.1016/j.crstbi.2021.07.002. eCollection 2021.
3
A new clustering and nomenclature for beta turns derived from high-resolution protein structures.
PLoS Comput Biol. 2019 Mar 7;15(3):e1006844. doi: 10.1371/journal.pcbi.1006844. eCollection 2019 Mar.
4
How members of the human gut microbiota overcome the sulfation problem posed by glycosaminoglycans.
Proc Natl Acad Sci U S A. 2017 Jul 3;114(27):7037-7042. doi: 10.1073/pnas.1704367114. Epub 2017 Jun 19.
5
Sphinx: merging knowledge-based and ab initio approaches to improve protein loop prediction.
Bioinformatics. 2017 May 1;33(9):1346-1353. doi: 10.1093/bioinformatics/btw823.
8
Endophilin-A1 BAR domain interaction with arachidonyl CoA.
Front Mol Biosci. 2014 Oct 28;1:20. doi: 10.3389/fmolb.2014.00020. eCollection 2014.
9
Emerging applications of small angle solution scattering in structural biology.
Protein Sci. 2015 Mar;24(3):267-76. doi: 10.1002/pro.2624. Epub 2015 Feb 12.
10
New developments in the program package for small-angle scattering data analysis.
J Appl Crystallogr. 2012 Mar 15;45(Pt 2):342-350. doi: 10.1107/S0021889812007662. eCollection 2012 Apr 1.

本文引用的文献

1
Optimization by simulated annealing.
Science. 1983 May 13;220(4598):671-80. doi: 10.1126/science.220.4598.671.
3
Determination of domain structure of proteins from X-ray solution scattering.
Biophys J. 2001 Jun;80(6):2946-53. doi: 10.1016/S0006-3495(01)76260-1.
4
Conformation of the Drosophila motor protein non-claret disjunctional in solution from X-ray and neutron scattering.
J Biol Chem. 2001 Jul 6;276(27):24826-32. doi: 10.1074/jbc.M103618200. Epub 2001 May 2.
5
Modeling zymogen protein C.
Biophys J. 2000 Dec;79(6):2925-43. doi: 10.1016/S0006-3495(00)76530-1.
6
Protein production: feeding the crystallographers and NMR spectroscopists.
Nat Struct Biol. 2000 Nov;7 Suppl:970-2. doi: 10.1038/80751.
7
Application of multiple sequence alignment profiles to improve protein secondary structure prediction.
Proteins. 2000 Aug 15;40(3):502-11. doi: 10.1002/1097-0134(20000815)40:3<502::aid-prot170>3.0.co;2-q.
8
A map of protein-rRNA distribution in the 70 S Escherichia coli ribosome.
J Biol Chem. 2000 May 12;275(19):14432-9. doi: 10.1074/jbc.275.19.14432.
10
Crystal versus solution structures of thiamine diphosphate-dependent enzymes.
J Biol Chem. 2000 Jan 7;275(1):297-302. doi: 10.1074/jbc.275.1.297.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验