Suppr超能文献

基于单个运动相关电位对运动进行分类的特征选择

Feature selection for the classification of movements from single movement-related potentials.

作者信息

Yom-Tov Elad, Inbar Gideon F

机构信息

Technion-Israel Institute of Technology, Haifa 32000, Israel.

出版信息

IEEE Trans Neural Syst Rehabil Eng. 2002 Sep;10(3):170-7. doi: 10.1109/TNSRE.2002.802875.

Abstract

Classification of movement-related potentials recorded from the scalp to their corresponding limb is a crucial task in brain-computer interfaces based on such potentials. Many features can be extracted from raw electroencephalographic signals to be used for classification, but the utilization of irrelevant or superfluous features is detrimental to the performance of classification algorithms. It is, therefore, necessary to select a small number of relevant features for the classification task. This paper demonstrates the use of two feature selection methods to choose a small number (10-20) of relevant features from a bank containing upward of 1000 features. One method is based on information theory and the other on the use of genetic algorithms. We show that the former is poorly suited for the aforementioned classification task and discuss the probable reasons for this. However, using a genetic algorithm on data recorded from five subjects we demonstrate that it is possible to differentiate between the movements of two limbs with a classification accuracy of 87% using as little as 10 features without subject training. With the addition of a simple coding scheme, this method can be applied to multiple limb classification and a 63% classification accuracy rate can be reached when attempting to distinguish between three limbs.

摘要

将从头皮记录的与运动相关的电位与其对应的肢体进行分类,是基于此类电位的脑机接口中的一项关键任务。可以从原始脑电图信号中提取许多特征用于分类,但使用不相关或多余的特征会损害分类算法的性能。因此,有必要为分类任务选择少量相关特征。本文展示了使用两种特征选择方法从包含1000多个特征的库中选择少量(10 - 20个)相关特征。一种方法基于信息论,另一种基于遗传算法的使用。我们表明前者不太适合上述分类任务,并讨论了其可能的原因。然而,在对五名受试者记录的数据上使用遗传算法,我们证明在不进行受试者训练的情况下,仅使用10个特征就有可能以87%的分类准确率区分两个肢体的运动。通过添加一种简单的编码方案,该方法可应用于多肢体分类,在尝试区分三个肢体时可达到63%的分类准确率。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验