Suppr超能文献

对称阈值线性网络中的允许集和禁止集。

Permitted and forbidden sets in symmetric threshold-linear networks.

作者信息

Hahnloser Richard H R, Seung H Sebastian, Slotine Jean-Jacques

机构信息

Howard Hughes Medical Institute, Department of Brain and Cognitive Sciences, MIT E25-210, Cambridge, MA 02139, U.S.A.

出版信息

Neural Comput. 2003 Mar;15(3):621-38. doi: 10.1162/089976603321192103.

Abstract

The richness and complexity of recurrent cortical circuits is an inexhaustible source of inspiration for thinking about high-level biological computation. In past theoretical studies, constraints on the synaptic connection patterns of threshold-linear networks were found that guaranteed bounded network dynamics, convergence to attractive fixed points, and multistability, all fundamental aspects of cortical information processing. However, these conditions were only sufficient, and it remained unclear which were the minimal (necessary) conditions for convergence and multistability. We show that symmetric threshold-linear networks converge to a set of attractive fixed points if and only if the network matrix is copositive. Furthermore, the set of attractive fixed points is nonconnected (the network is multiattractive) if and only if the network matrix is not positive semidefinite. There are permitted sets of neurons that can be coactive at a stable steady state and forbidden sets that cannot. Permitted sets are clustered in the sense that subsets of permitted sets are permitted and supersets of forbidden sets are forbidden. By viewing permitted sets as memories stored in the synaptic connections, we provide a formulation of long-term memory that is more general than the traditional perspective of fixed-point attractor networks. There is a close correspondence between threshold-linear networks and networks defined by the generalized Lotka-Volterra equations.

摘要

反复出现的皮层回路的丰富性和复杂性是思考高级生物计算的取之不尽的灵感来源。在过去的理论研究中,发现了对阈值线性网络突触连接模式的限制,这些限制保证了有界的网络动态、收敛到吸引性不动点以及多稳定性,这些都是皮层信息处理的所有基本方面。然而,这些条件只是充分的,目前尚不清楚收敛和多稳定性的最小(必要)条件是什么。我们表明,当且仅当网络矩阵是余正定的时,对称阈值线性网络才会收敛到一组吸引性不动点。此外,当且仅当网络矩阵不是半正定的时,吸引性不动点集才是不连通的(网络是多吸引的)。存在可以在稳定稳态下共同激活的允许神经元集和不允许的禁止集。允许集在允许集的子集被允许而禁止集的超集被禁止的意义上是聚类的。通过将允许集视为存储在突触连接中的记忆,我们提供了一种比定点吸引子网络的传统观点更通用的长期记忆表述。阈值线性网络与由广义Lotka-Volterra方程定义的网络之间存在密切对应关系。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验