通过费米能级响应石墨烯对金属纳米颗粒催化的单细胞电子转移进行体内伏安成像

In Vivo Voltammetric Imaging of Metal Nanoparticle-Catalyzed Single-Cell Electron Transfer by Fermi Level-Responsive Graphene.

作者信息

Xia Qing, Liu Rui, Chen Xueqin, Chen Zixuan, Zhu Jun-Jie

机构信息

State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China.

Shenzhen Research Institute of Nanjing University, Shenzhen 518000, P. R. China.

出版信息

Research (Wash D C). 2023 May 22;6:0145. doi: 10.34133/research.0145. eCollection 2023.

Abstract

Metal nanomaterials can facilitate microbial extracellular electron transfer (EET) in the electrochemically active biofilm. However, the role of nanomaterials/bacteria interaction in this process is still unclear. Here, we reported the single-cell voltammetric imaging of MR-1 at the single-cell level to elucidate the metal-enhanced EET mechanism in vivo by the Fermi level-responsive graphene electrode. Quantified oxidation currents of ~20 fA were observed from single native cells and gold nanoparticle (AuNP)-coated cells in linear sweep voltammetry analysis. On the contrary, the oxidation potential was reduced by up to 100 mV after AuNP modification. It revealed the mechanism of AuNP-catalyzed direct EET decreasing the oxidation barrier between the outer membrane cytochromes and the electrode. Our method offered a promising strategy to understand the nanomaterials/bacteria interaction and guide the rational construction of EET-related microbial fuel cells.

摘要

金属纳米材料可促进电化学活性生物膜中的微生物细胞外电子转移(EET)。然而,纳米材料与细菌相互作用在此过程中的作用仍不清楚。在此,我们报道了通过费米能级响应石墨烯电极在单细胞水平上对MR-1进行单细胞伏安成像,以阐明体内金属增强的EET机制。在线性扫描伏安分析中,从单个天然细胞和金纳米颗粒(AuNP)包被的细胞中观察到约20 fA的定量氧化电流。相反,AuNP修饰后氧化电位降低了高达100 mV。这揭示了AuNP催化的直接EET降低外膜细胞色素与电极之间氧化屏障的机制。我们的方法为理解纳米材料与细菌的相互作用以及指导与EET相关的微生物燃料电池的合理构建提供了一种有前景的策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3f5b/10200910/bd6a3c983f44/research.0145.fig.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索