Suppr超能文献

共享内存多处理器环境下的非刚性图像配准及其在大脑、乳房和蜜蜂中的应用。

Nonrigid image registration in shared-memory multiprocessor environments with application to brains, breasts, and bees.

作者信息

Rohlfing Torsten, Maurer Calvin R

机构信息

Image Guidance Laboratories, Department of Neurosurgery, Stanford University, Stanford, CA 94305-5327, USA.

出版信息

IEEE Trans Inf Technol Biomed. 2003 Mar;7(1):16-25. doi: 10.1109/titb.2003.808506.

Abstract

One major problem with nonrigid image registration techniques is their high computational cost. Because of this, these methods have found limited application to clinical situations where fast execution is required, e.g., intraoperative imaging. This paper presents a parallel implementation of a nonrigid image registration algorithm. It takes advantage of shared-memory multiprocessor computer architectures using multithreaded programming by partitioning of data and partitioning of tasks, depending on the computational subproblem. For three different biomedical applications (intraoperative brain deformation, contrast-enhanced MR mammography, intersubject brain registration), the scaling behavior of the algorithm is quantitatively analyzed. The method is demonstrated to perform the computation of intra-operative brain deformation in less than a minute using 64 CPUs on a 128-CPU shared-memory supercomputer (SGI Origin 3800). It is shown that its serial component is no more than 2% of the total computation time, allowing a speedup of at least a factor of 50. In most cases, the theoretical limit of the speedup is substantially higher (up to 132-fold in the application examples presented in this paper). The parallel implementation of our algorithm is, therefore, capable of solving nonrigid registration problems with short execution time requirements and may be considered an important step in the application of such techniques to clinically important problems such as the computation of brain deformation during cranial image-guided surgery.

摘要

非刚性图像配准技术的一个主要问题是其计算成本高。因此,这些方法在需要快速执行的临床情况(例如术中成像)中的应用有限。本文提出了一种非刚性图像配准算法的并行实现。它利用共享内存多处理器计算机架构,通过根据计算子问题对数据进行分区和对任务进行分区来使用多线程编程。对于三种不同的生物医学应用(术中脑变形、对比增强磁共振乳腺成像、受试者间脑配准),对该算法的缩放行为进行了定量分析。在一台128个CPU的共享内存超级计算机(SGI Origin 3800)上使用64个CPU,该方法被证明能在不到一分钟的时间内完成术中脑变形的计算。结果表明,其串行部分不超过总计算时间的2%,加速比至少为50倍。在大多数情况下,加速比的理论极限要高得多(在本文给出的应用示例中高达132倍)。因此,我们算法的并行实现能够在短执行时间要求下解决非刚性配准问题,并且可以被认为是将此类技术应用于临床重要问题(如颅骨图像引导手术中脑变形的计算)的重要一步。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验