Suppr超能文献

生态系统与大气相互作用的最新进展:生态学视角

Recent advances in ecosystem-atmosphere interactions: an ecological perspective.

作者信息

Moorcroft P R

机构信息

Department of Organismic and Evolutionary Biology, Harvard University, 22 Divinity Avenue, Cambridge, MA 02138, USA.

出版信息

Proc Biol Sci. 2003 Jun 22;270(1521):1215-27. doi: 10.1098/rspb.2002.2251.

Abstract

The atmosphere and terrestrial ecosystems are fundamentally coupled on a variety of time-scales. On short time-scales, this bi-directional interaction is dominated by the rapid exchange of CO(2), water and energy between the atmosphere and the land surface; on long time-scales, the interaction involves changes in ecosystem structure and composition in response to changes in climate that feed back through biophysical and biogeochemical mechanisms to influence climate over decades and centuries. After briefly describing some early pioneering work, I focus this review on recent advances in understanding long-term ecosystem-atmosphere interactions through a discussion of three case studies. I then examine how efforts to assess the stability and resilience of ecosystem-atmosphere interactions over these long time-scales using Dynamic Global Vegetation Models are hampered by the presence of important functional diversity and heterogeneity within plant communities. Recent work illustrates how this issue can be addressed through the use of Structured Ecosystem Models that more accurately scale between the short-term physiological responses of individual plants and the long-term, large-scale dynamics of heterogeneous, functionally diverse ecosystems.

摘要

大气和陆地生态系统在各种时间尺度上存在着根本性的耦合。在短时间尺度上,这种双向相互作用主要由大气与陆地表面之间二氧化碳、水和能量的快速交换主导;在长时间尺度上,这种相互作用涉及生态系统结构和组成的变化,以响应气候的变化,这些变化通过生物物理和生物地球化学机制反馈,在数十年和数百年的时间里影响气候。在简要描述了一些早期的开创性工作之后,我将通过讨论三个案例研究,把这篇综述的重点放在理解长期生态系统 - 大气相互作用的最新进展上。然后,我将研究使用动态全球植被模型评估这些长时间尺度上生态系统 - 大气相互作用的稳定性和恢复力的努力,是如何因植物群落中重要的功能多样性和异质性的存在而受到阻碍的。最近的研究表明,如何通过使用结构化生态系统模型来解决这个问题,该模型能够更准确地在个体植物的短期生理反应与异质、功能多样的生态系统的长期、大规模动态之间进行尺度转换。

相似文献

1
Recent advances in ecosystem-atmosphere interactions: an ecological perspective.
Proc Biol Sci. 2003 Jun 22;270(1521):1215-27. doi: 10.1098/rspb.2002.2251.
2
The influence of terrestrial ecosystems on climate.
Trends Ecol Evol. 2006 May;21(5):254-60. doi: 10.1016/j.tree.2006.03.005. Epub 2006 Mar 29.
3
Ecological impacts of atmospheric CO2 enrichment on terrestrial ecosystems.
Philos Trans A Math Phys Eng Sci. 2003 Sep 15;361(1810):2023-41; discussion 2041. doi: 10.1098/rsta.2003.1241.
5
Terrestrial ecosystems, increased solar ultraviolet radiation, and interactions with other climate change factors.
Photochem Photobiol Sci. 2007 Mar;6(3):252-66. doi: 10.1039/b700019g. Epub 2007 Feb 1.
6
Stable isotopes in ecosystem science: structure, function and dynamics of a subtropical Savanna.
Rapid Commun Mass Spectrom. 1999;13(13):1263-77. doi: 10.1002/(SICI)1097-0231(19990715)13:13<1263::AID-RCM653>3.0.CO;2-J.
7
Long-term oceanographic and ecological research in the Western English Channel.
Adv Mar Biol. 2005;47:1-105. doi: 10.1016/S0065-2881(04)47001-1.
8
The effects of climate charge on land-atmosphere feedbacks in arctic tundra regions.
Trends Ecol Evol. 1994 Sep;9(9):324-9. doi: 10.1016/0169-5347(94)90152-X.
9
Botany and a changing world: introduction to the special issue on global biological change.
Am J Bot. 2013 Jul;100(7):1229-33. doi: 10.3732/ajb.1300198. Epub 2013 Jul 3.
10
How close are we to a predictive science of the biosphere?
Trends Ecol Evol. 2006 Jul;21(7):400-7. doi: 10.1016/j.tree.2006.04.009. Epub 2006 May 12.

引用本文的文献

2
Biomass and nutrient allocation strategies in a desert ecosystem in the Hexi Corridor, northwest China.
J Plant Res. 2017 Jul;130(4):699-708. doi: 10.1007/s10265-017-0940-6. Epub 2017 Apr 11.
3
Predicting maximum tree heights and other traits from allometric scaling and resource limitations.
PLoS One. 2011;6(6):e20551. doi: 10.1371/journal.pone.0020551. Epub 2011 Jun 13.
4
Climate change impacts on forestry.
Proc Natl Acad Sci U S A. 2007 Dec 11;104(50):19697-702. doi: 10.1073/pnas.0701424104. Epub 2007 Dec 6.
6
Coincident scales of forest feedback on climate and conservation in a diversity hot spot.
Proc Biol Sci. 2006 Mar 22;273(1587):757-65. doi: 10.1098/rspb.2005.3364.
7
Computational ecology: from the complex to the simple and back.
PLoS Comput Biol. 2005 Jul;1(2):101-5. doi: 10.1371/journal.pcbi.0010018.
8
Functional groups based on leaf physiology: are they spatially and temporally robust?
Oecologia. 2005 Jul;144(3):337-52. doi: 10.1007/s00442-005-0043-2. Epub 2005 Sep 16.

本文引用的文献

1
Amazon deforestation and climate change.
Science. 1990 Mar 16;247(4948):1322-5. doi: 10.1126/science.247.4948.1322.
2
Drought in the sahara: a biogeophysical feedback mechanism.
Science. 1975 Feb 7;187(4175):434-5. doi: 10.1126/science.187.4175.434.
3
Determination of World Plant Formations From Simple Climatic Data.
Science. 1947 Apr 4;105(2727):367-8. doi: 10.1126/science.105.2727.367.
4
Influence of Land-Surface Evapotranspiration on the Earth's Climate.
Science. 1982 Mar 19;215(4539):1498-501. doi: 10.1126/science.215.4539.1498.
5
Projecting the future of the U.S. carbon sink.
Proc Natl Acad Sci U S A. 2002 Feb 5;99(3):1389-94. doi: 10.1073/pnas.012249999.
6
Biodiversity and ecosystem functioning: current knowledge and future challenges.
Science. 2001 Oct 26;294(5543):804-8. doi: 10.1126/science.1064088.
7
8
The response of two contrasting limestone grasslands to simulated climate change.
Science. 2000 Aug 4;289(5480):762-5. doi: 10.1126/science.289.5480.762.
9
Enhancement of Interdecadal Climate Variability in the Sahel by Vegetation Interaction.
Science. 1999 Nov 19;286(5444):1537-1540. doi: 10.1126/science.286.5444.1537.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验