Moorcroft P R
Department of Organismic and Evolutionary Biology, Harvard University, 22 Divinity Avenue, Cambridge, MA 02138, USA.
Proc Biol Sci. 2003 Jun 22;270(1521):1215-27. doi: 10.1098/rspb.2002.2251.
The atmosphere and terrestrial ecosystems are fundamentally coupled on a variety of time-scales. On short time-scales, this bi-directional interaction is dominated by the rapid exchange of CO(2), water and energy between the atmosphere and the land surface; on long time-scales, the interaction involves changes in ecosystem structure and composition in response to changes in climate that feed back through biophysical and biogeochemical mechanisms to influence climate over decades and centuries. After briefly describing some early pioneering work, I focus this review on recent advances in understanding long-term ecosystem-atmosphere interactions through a discussion of three case studies. I then examine how efforts to assess the stability and resilience of ecosystem-atmosphere interactions over these long time-scales using Dynamic Global Vegetation Models are hampered by the presence of important functional diversity and heterogeneity within plant communities. Recent work illustrates how this issue can be addressed through the use of Structured Ecosystem Models that more accurately scale between the short-term physiological responses of individual plants and the long-term, large-scale dynamics of heterogeneous, functionally diverse ecosystems.
大气和陆地生态系统在各种时间尺度上存在着根本性的耦合。在短时间尺度上,这种双向相互作用主要由大气与陆地表面之间二氧化碳、水和能量的快速交换主导;在长时间尺度上,这种相互作用涉及生态系统结构和组成的变化,以响应气候的变化,这些变化通过生物物理和生物地球化学机制反馈,在数十年和数百年的时间里影响气候。在简要描述了一些早期的开创性工作之后,我将通过讨论三个案例研究,把这篇综述的重点放在理解长期生态系统 - 大气相互作用的最新进展上。然后,我将研究使用动态全球植被模型评估这些长时间尺度上生态系统 - 大气相互作用的稳定性和恢复力的努力,是如何因植物群落中重要的功能多样性和异质性的存在而受到阻碍的。最近的研究表明,如何通过使用结构化生态系统模型来解决这个问题,该模型能够更准确地在个体植物的短期生理反应与异质、功能多样的生态系统的长期、大规模动态之间进行尺度转换。