Suppr超能文献

来自木兰假丝酵母的一种新型赤藓糖还原酶的纯化与鉴定

Purification and characterization of a novel erythrose reductase from Candida magnoliae.

作者信息

Lee Jung-Kul, Kim Sang-Yong, Ryu Yeon-Woo, Seo Jin-Ho, Kim Jung-Hoe

机构信息

BioNgene Co., Ltd., 10-1 1Ka Myungryun-Dong, Jongro-Ku, Seoul 110-521, Korea.

出版信息

Appl Environ Microbiol. 2003 Jul;69(7):3710-8. doi: 10.1128/AEM.69.7.3710-3718.2003.

Abstract

Erythritol biosynthesis is catalyzed by erythrose reductase, which converts erythrose to erythritol. Erythrose reductase, however, has never been characterized in terms of amino acid sequence and kinetics. In this study, NAD(P)H-dependent erythrose reductase was purified to homogeneity from Candida magnoliae KFCC 11023 by ion exchange, gel filtration, affinity chromatography, and preparative electrophoresis. The molecular weights of erythrose reductase determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and gel filtration chromatography were 38,800 and 79,000, respectively, suggesting that the enzyme is homodimeric. Partial amino acid sequence analysis indicates that the enzyme is closely related to other yeast aldose reductases. C. magnoliae erythrose reductase catalyzes the reduction of various aldehydes. Among aldoses, erythrose was the preferred substrate (K(m) = 7.9 mM; k(cat)/K(m) = 0.73 mM(-1) s(-1)). This enzyme had a dual coenzyme specificity with greater catalytic efficiency with NADH (k(cat)/K(m) = 450 mM(-1) s(-1)) than with NADPH (k(cat)/K(m) = 5.5 mM(-1) s(-1)), unlike previously characterized aldose reductases, and is specific for transferring the 4-pro-R hydrogen of NADH, which is typical of members of the aldo/keto reductase superfamily. Initial velocity and product inhibition studies are consistent with the hypothesis that the reduction proceeds via a sequential ordered mechanism. The enzyme required sulfhydryl compounds for optimal activity and was strongly inhibited by Cu(2+) and quercetin, a strong aldose reductase inhibitor, but was not inhibited by aldehyde reductase inhibitors and did not catalyze the reduction of the substrates for carbonyl reductase. These data indicate that the C. magnoliae erythrose reductase is an NAD(P)H-dependent homodimeric aldose reductase with an unusual dual coenzyme specificity.

摘要

赤藓糖醇的生物合成由赤藓糖还原酶催化,该酶将赤藓糖转化为赤藓糖醇。然而,赤藓糖还原酶从未在氨基酸序列和动力学方面得到表征。在本研究中,通过离子交换、凝胶过滤、亲和色谱和制备电泳从大花假丝酵母KFCC 11023中纯化出了具有NAD(P)H依赖性的赤藓糖还原酶,并使其达到了均一性。通过十二烷基硫酸钠-聚丙烯酰胺凝胶电泳和凝胶过滤色谱法测定的赤藓糖还原酶分子量分别为38,800和79,000,这表明该酶是同二聚体。部分氨基酸序列分析表明,该酶与其他酵母醛糖还原酶密切相关。大花假丝酵母赤藓糖还原酶催化各种醛的还原反应。在醛糖中,赤藓糖是首选底物(K(m) = 7.9 mM;k(cat)/K(m) = 0.73 mM(-1) s(-1))。与之前表征的醛糖还原酶不同,该酶具有双重辅酶特异性,对NADH的催化效率更高(k(cat)/K(m) = 450 mM(-1) s(-1)),而对NADPH的催化效率为(k(cat)/K(m) = 5.5 mM(-1) s(-1)),并且对转移NADH的4-pro-R氢具有特异性,这是醛/酮还原酶超家族成员的典型特征。初始速度和产物抑制研究与还原反应通过顺序有序机制进行的假设一致。该酶需要巯基化合物来达到最佳活性,并且受到Cu(2+)和强力醛糖还原酶抑制剂槲皮素的强烈抑制,但不受醛还原酶抑制剂的抑制,也不催化羰基还原酶底物的还原反应。这些数据表明,大花假丝酵母赤藓糖还原酶是一种具有NAD(P)H依赖性的同二聚体醛糖还原酶,具有不寻常的双重辅酶特异性。

相似文献

引用本文的文献

本文引用的文献

9
The structure and function of yeast xylose (aldose) reductases.酵母木糖(醛糖)还原酶的结构与功能。
Yeast. 1998 Aug;14(11):977-84. doi: 10.1002/(SICI)1097-0061(199808)14:11<977::AID-YEA302>3.0.CO;2-J.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验