Moulé Adam J, Spence Megan M, Han Song-I, Seeley Juliette A, Pierce Kimberly L, Saxena Sunil, Pines Alexander
Materials Science Division, Lawrence Berkeley National Laboratory, University of California, Berkeley, CA 94720, USA.
Proc Natl Acad Sci U S A. 2003 Aug 5;100(16):9122-7. doi: 10.1073/pnas.1133497100. Epub 2003 Jul 22.
A technique is proposed in which an NMR spectrum or MRI is encoded and stored as spin polarization and is then moved to a different physical location to be detected. Remote detection allows the separate optimization of the encoding and detection steps, permitting the independent choice of experimental conditions and excitation and detection methodologies. In the initial experimental demonstration of this technique, we show that taking dilute 129Xe from a porous sample placed inside a large encoding coil and concentrating it into a smaller detection coil can amplify NMR signal. In general, the study of NMR active molecules at low concentration that have low physical filling factor is facilitated by remote detection. In the second experimental demonstration, MRI information encoded in a very low-field magnet (4-7 mT) is transferred to a high-field magnet (4.2 T) to be detected under optimized conditions. Furthermore, remote detection allows the utilization of ultrasensitive optical or superconducting quantum interference device detection techniques, which broadens the horizon of NMR experimentation.
本文提出了一种技术,其中核磁共振谱或磁共振成像被编码并存储为自旋极化,然后转移到不同的物理位置进行检测。远程检测允许对编码和检测步骤进行单独优化,从而可以独立选择实验条件以及激发和检测方法。在该技术的初步实验演示中,我们表明,将放置在大型编码线圈内的多孔样品中的稀129Xe取出并浓缩到较小的检测线圈中,可以放大核磁共振信号。一般来说,远程检测有助于对具有低物理填充因子的低浓度核磁共振活性分子进行研究。在第二个实验演示中,在非常低场强的磁体(4 - 7 mT)中编码的磁共振成像信息被转移到高场强磁体(4.2 T)中,以便在优化条件下进行检测。此外,远程检测允许使用超灵敏光学或超导量子干涉器件检测技术,这拓宽了核磁共振实验的视野。