Witte Christopher, Kunth Martin, Döpfert Jörg, Rossella Federica, Schröder Leif
ERC Project BiosensorImaging, Leibniz-Institut für Molekulare Pharmakologie.
J Vis Exp. 2012 Sep 6(67):4268. doi: 10.3791/4268.
Nuclear magnetic resonance (NMR) spectroscopy and imaging (MRI) suffer from intrinsic low sensitivity because even strong external magnetic fields of ~10 T generate only a small detectable net-magnetization of the sample at room temperature (1). Hence, most NMR and MRI applications rely on the detection of molecules at relative high concentration (e.g., water for imaging of biological tissue) or require excessive acquisition times. This limits our ability to exploit the very useful molecular specificity of NMR signals for many biochemical and medical applications. However, novel approaches have emerged in the past few years: Manipulation of the detected spin species prior to detection inside the NMR/MRI magnet can dramatically increase the magnetization and therefore allows detection of molecules at much lower concentration (2). Here, we present a method for polarization of a xenon gas mixture (2-5% Xe, 10% N2, He balance) in a compact setup with a ca. 16000-fold signal enhancement. Modern line-narrowed diode lasers allow efficient polarization (7) and immediate use of gas mixture even if the noble gas is not separated from the other components. The SEOP apparatus is explained and determination of the achieved spin polarization is demonstrated for performance control of the method. The hyperpolarized gas can be used for void space imaging, including gas flow imaging or diffusion studies at the interfaces with other materials (8,9). Moreover, the Xe NMR signal is extremely sensitive to its molecular environment (6). This enables the option to use it as an NMR/MRI contrast agent when dissolved in aqueous solution with functionalized molecular hosts that temporarily trap the gas (10,11). Direct detection and high-sensitivity indirect detection of such constructs is demonstrated in both spectroscopic and imaging mode.
核磁共振(NMR)光谱学和成像(MRI)存在固有的低灵敏度问题,因为即使是约10 T的强外部磁场,在室温下也只能使样品产生少量可检测的净磁化强度(1)。因此,大多数NMR和MRI应用依赖于检测相对高浓度的分子(例如用于生物组织成像的水),或者需要过长的采集时间。这限制了我们在许多生化和医学应用中利用NMR信号非常有用的分子特异性的能力。然而,在过去几年中出现了新的方法:在NMR/MRI磁体内部进行检测之前对检测到的自旋物种进行操控,可以显著增加磁化强度,从而能够检测浓度低得多的分子(2)。在这里,我们展示了一种在紧凑装置中对氙气混合物(2 - 5% Xe,10% N2,其余为He)进行极化的方法,信号增强约16000倍。现代线窄二极管激光器能够实现高效极化(7),并且即使稀有气体未与其他成分分离,也能立即使用气体混合物。对自旋交换光泵浦(SEOP)装置进行了说明,并展示了所实现的自旋极化的测定,以用于该方法的性能控制。超极化气体可用于孔隙空间成像,包括气体流动成像或与其他材料界面处的扩散研究(8,9)。此外,Xe NMR信号对其分子环境极其敏感(6)。当溶解在具有临时捕获气体功能化分子主体的水溶液中时,这使得它有作为NMR/MRI造影剂的可能性(10,11)。在光谱和成像模式下都展示了对此类结构的直接检测和高灵敏度间接检测。