De Wildeman Stefaan, Diekert Gabriele, Van Langenhove Herman, Verstraete Willy
Laboratory for Microbial Ecology and Technology, Ghent University, B-9000 Ghent, Belgium.
Appl Environ Microbiol. 2003 Sep;69(9):5643-7. doi: 10.1128/AEM.69.9.5643-5647.2003.
The suspected carcinogen 1,2-dichloroethane (1,2-DCA) is the most abundant chlorinated C(2) groundwater pollutant on earth. However, a reductive in situ detoxification technology for this compound does not exist. Although anaerobic dehalorespiring bacteria are known to catalyze several dechlorination steps in the reductive-degradation pathway of chlorinated ethenes and ethanes, no appropriate isolates that selectively and metabolically convert them into completely dechlorinated end products in defined growth media have been reported. Here we report on the isolation of Desulfitobacterium dichloroeliminans strain DCA1, a nutritionally defined anaerobic dehalorespiring bacterium that selectively converts 1,2-dichloroethane and all possible vicinal dichloropropanes and -butanes into completely dechlorinated end products. Menaquinone was identified as an essential cofactor for growth of strain DCA1 in pure culture. Strain DCA1 converts chiral chlorosubstrates, revealing the presence of a stereoselective dehalogenase that exclusively catalyzes an energy-conserving anti mechanistic dichloroelimination. Unlike any known dehalorespiring isolate, strain DCA1 does not carry out reductive hydrogenolysis reactions but rather exclusively dichloroeliminates its substrates. This unique dehalorespiratory biochemistry has shown promising application possibilities for bioremediation purposes and fine-chemical synthesis.
疑似致癌物1,2 - 二氯乙烷(1,2 - DCA)是地球上最常见的含氯C₂类地下水污染物。然而,目前尚无针对该化合物的原位还原解毒技术。虽然已知厌氧脱卤呼吸细菌能催化氯乙烯和氯乙烷还原降解途径中的多个脱氯步骤,但尚未有报道称在特定生长培养基中能选择性地将其代谢转化为完全脱氯终产物的合适菌株。在此,我们报告了二氯消除脱硫肠杆菌菌株DCA1的分离情况,这是一种营养成分明确的厌氧脱卤呼吸细菌,能选择性地将1,2 - 二氯乙烷以及所有可能的邻二氯丙烷和邻二氯丁烷转化为完全脱氯的终产物。甲萘醌被确定为菌株DCA1纯培养生长的必需辅因子。菌株DCA1能转化手性氯底物,这表明存在一种立体选择性脱卤酶,该酶仅催化节能的反式机理二氯消除反应。与任何已知的脱卤呼吸分离菌株不同,菌株DCA1不进行还原性氢解反应,而是仅对其底物进行二氯消除反应。这种独特的脱卤呼吸生物化学特性在生物修复和精细化学合成方面显示出了有前景的应用可能性。