Suppr超能文献

Energy transduction in the methanogen Methanococcus voltae is based on a sodium current.

作者信息

Dybas M, Konisky J

机构信息

Department of Microbiology, University of Illinois, Urbana 61801.

出版信息

J Bacteriol. 1992 Sep;174(17):5575-83. doi: 10.1128/jb.174.17.5575-5583.1992.

Abstract

We provide experimental support for the proposal that ATP production in Methanococcus voltae, a methanogenic member of the archaea, is based on an energetic system in which sodium ions, not protons, are the coupling ions. We show that when grown at a pH of 6.0, 7.1, or 8.2, M. voltae cells maintain a membrane potential of approximately -150 mV. The cells maintain a transmembrane pH gradient (pH(in) - pH(out)) of -0.1, -0.2, and -0.2, respectively, values not favorable to the inward movement of protons. The cells maintain a transmembrane sodium concentration gradient (sodium(out)/sodium(in)) of 1.2, 3.4, and 11.6, respectively. While the protonophore 3,3',4',5-tetrachlorosalicylanilide inhibits ATP formation in cells grown at pH 6.5, neither ATP formation nor growth is inhibited in cells grown in medium at pH 8.2. We show that when grown at pH 8.2, cells synthesize ATP in the absence of a favorably oriented proton motive force. Whether grown at pH 6.5 or pH 8.2, M. voltae extrudes Na+ via a primary pump whose activity does not depend on a proton motive force. The addition of protons to the cells leads to a harmaline-sensitive efflux of Na+ and vice versa, indicating the presence of Na+/H+ antiporter activity and, thus, a second mechanism for the translocation of Na+ across the cell membrane. M. voltae contains a membrane component that is immunologically related to the H(+)-translocating ATP synthase of the archaeabacterium Sulfolobus acidocaldarius. Since we demonstrated that ATP production can be driven by an artificially imposed membrane potential only in the presence of sodium ions, we propose that ATP production in M. voltae is mediated by an Na+-translocating ATP synthase whose function is coupled to a sodium motive force that is generated through a primary Na+ pump.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2a13/206501/ad262e4f3020/jbacter00083-0105-a.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验