Suppr超能文献

In vivo identification of aflatoxin-induced free radicals in rat bile.

作者信息

Towner Rheal A, Qian Steven Y, Kadiiska Maria B, Mason Ronald P

机构信息

Free Radical Biology and Aging Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA.

出版信息

Free Radic Biol Med. 2003 Nov 15;35(10):1330-40. doi: 10.1016/j.freeradbiomed.2003.08.002.

Abstract

Aflatoxin B1 (AFB1) is a potent hepatocarcinogen. We have recently detected [via electron spin resonance (ESR) spectroscopy] free radicals in vivo in rat bile following AFB1 metabolism using the spin trapping [alpha-(4-pyridyl-1-oxide)-N-tert-butyl nitrone (4-POBN)] technique. The aim of the present study was to identify the trapped free radical intermediates from the in vivo hepatic metabolism of AFB1. Rats were treated simultaneously with AFB1 (3 mg/kg i.p.) and the spin trapping agent 4-POBN (1 g/kg i.p.), and bile was collected over a period of 1 h at 20 min intervals. On-line high performance liquid chromatography (HPLC) coupled to ESR was used to identify an arachidonic acid-derived radical adduct of 4-POBN in rat bile, and a methyl adduct of 4-POBN from the reaction of hydroxyl radicals with carbon-13-labeled dimethyl sulfoxide ((13)C-DMSO). The effect of metabolic inhibitors, such as desferoxamine mesylate (DFO), an iron chelator, 2-dimethylaminoethyl-2,2-diphenylvalerate hydrochloride (SKF) 525A, a cytochrome P-450 inhibitor, and gadolinium chloride (GdCl(3)), a Kupffer cell inactivator, on in vivo aflatoxin-induced free radical formation were also studied. It was found that there was a significant decrease in radical formation as a result of DFO, SKF525A and GdCl(3) inhibition. Trapped 4-POBN radical adducts were also detected in rat bile following the in vivo metabolism of aflatoxin-M1, one of the hydroxylated metabolites of AFB1.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验