Suppr超能文献

使用概率图模型推断细胞网络。

Inferring cellular networks using probabilistic graphical models.

作者信息

Friedman Nir

机构信息

School of Computer Science and Engineering, Hebrew University, 91904 Jerusalem, Israel.

出版信息

Science. 2004 Feb 6;303(5659):799-805. doi: 10.1126/science.1094068.

Abstract

High-throughput genome-wide molecular assays, which probe cellular networks from different perspectives, have become central to molecular biology. Probabilistic graphical models are useful for extracting meaningful biological insights from the resulting data sets. These models provide a concise representation of complex cellular networks by composing simpler submodels. Procedures based on well-understood principles for inferring such models from data facilitate a model-based methodology for analysis and discovery. This methodology and its capabilities are illustrated by several recent applications to gene expression data.

摘要

高通量全基因组分子检测从不同角度探测细胞网络,已成为分子生物学的核心。概率图模型有助于从所得数据集中提取有意义的生物学见解。这些模型通过组合更简单的子模型,简洁地表示复杂的细胞网络。基于从数据中推断此类模型的公认原则的程序,促进了基于模型的分析和发现方法。最近对基因表达数据的几个应用说明了这种方法及其能力。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验