Suppr超能文献

有源平均场:在水平集框架中求解平均场近似

Active mean fields: solving the mean field approximation in the level set framework.

作者信息

Pohl Kilian M, Kikinis Ron, Wells William M

机构信息

Surgical Planning Laboratory, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA.

出版信息

Inf Process Med Imaging. 2007;20:26-37. doi: 10.1007/978-3-540-73273-0_3.

Abstract

We describe a new approach for estimating the posterior probability of tissue labels. Conventional likelihood models are combined with a curve length prior on boundaries, and an approximate posterior distribution on labels is sought via the Mean Field approach. Optimizing the resulting estimator by gradient descent leads to a level set style algorithm where the level set functions are the logarithm-of-odds encoding of the posterior label probabilities in an unconstrained linear vector space. Applications with more than two labels are easily accommodated. The label assignment is accomplished by the Maximum A Posteriori rule, so there are no problems of "overlap" or "vacuum". We test the method on synthetic images with additive noise. In addition, we segment a magnetic resonance scan into the major brain compartments and subcortical structures.

摘要

我们描述了一种估计组织标签后验概率的新方法。传统的似然模型与边界上的曲线长度先验相结合,并通过平均场方法寻求标签上的近似后验分布。通过梯度下降优化所得估计器会得到一种水平集风格的算法,其中水平集函数是无约束线性向量空间中后验标签概率的对数优势编码。该方法可轻松应用于具有两个以上标签的情况。标签分配通过最大后验规则完成,因此不存在“重叠”或“空白”问题。我们在带有加性噪声的合成图像上测试了该方法。此外,我们将磁共振扫描分割成主要的脑区隔和皮质下结构。

相似文献

1
Active mean fields: solving the mean field approximation in the level set framework.
Inf Process Med Imaging. 2007;20:26-37. doi: 10.1007/978-3-540-73273-0_3.
2
A marginalized MAP approach and EM optimization for pair-wise registration.
Inf Process Med Imaging. 2007;20:662-74. doi: 10.1007/978-3-540-73273-0_55.
3
A log-Euclidean framework for statistics on diffeomorphisms.
Med Image Comput Comput Assist Interv. 2006;9(Pt 1):924-31. doi: 10.1007/11866565_113.
4
Geometry driven volumetric registration.
Inf Process Med Imaging. 2007;20:675-86. doi: 10.1007/978-3-540-73273-0_56.
5
A unifying approach to registration, segmentation, and intensity correction.
Med Image Comput Comput Assist Interv. 2005;8(Pt 1):310-8. doi: 10.1007/11566465_39.
6
A general framework for image segmentation using ordered spatial dependency.
Med Image Comput Comput Assist Interv. 2006;9(Pt 2):848-55. doi: 10.1007/11866763_104.
8
Using the logarithm of odds to define a vector space on probabilistic atlases.
Med Image Anal. 2007 Oct;11(5):465-77. doi: 10.1016/j.media.2007.06.003. Epub 2007 Jun 22.
9
Prior knowledge driven multiscale segmentation of brain MRI.
Med Image Comput Comput Assist Interv. 2007;10(Pt 2):118-26. doi: 10.1007/978-3-540-75759-7_15.
10
Coupled shape distribution-based segmentation of multiple objects.
Inf Process Med Imaging. 2005;19:345-56. doi: 10.1007/11505730_29.

引用本文的文献

1
An Optimal, Generative Model for Estimating Multi-Label Probabilistic Maps.
IEEE Trans Med Imaging. 2020 Jul;39(7):2316-2326. doi: 10.1109/TMI.2020.2968917. Epub 2020 Jan 23.
2
ACTIVE MEAN FIELDS FOR PROBABILISTIC IMAGE SEGMENTATION: CONNECTIONS WITH CHAN-VESE AND RUDIN-OSHER-FATEMI MODELS.
SIAM J Imaging Sci. 2017;10(3):1069-1103. doi: 10.1137/16M1058601. Epub 2017 Jul 27.
3
OPTIMAL PARAMETER MAP ESTIMATION FOR SHAPE REPRESENTATION: A GENERATIVE APPROACH.
Proc IEEE Int Symp Biomed Imaging. 2016 Apr;2016:660-663. doi: 10.1109/ISBI.2016.7493353. Epub 2016 Jun 16.
4
A Multiple Object Geometric Deformable Model for Image Segmentation.
Comput Vis Image Underst. 2013 Feb 1;117(2):145-157. doi: 10.1016/j.cviu.2012.10.006.
5
A Multi-Compartment Segmentation Framework With Homeomorphic Level Sets.
Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit. 2008:1-6. doi: 10.1109/CVPR.2008.4587475.
6
A Multiple Geometric Deformable Model Framework for Homeomorphic 3D Medical Image Segmentation.
Conf Comput Vis Pattern Recognit Workshops. 2008 Jul 15;2008:1-7. doi: 10.1109/CVPRW.2008.4563013.
7
Segmentation of image ensembles via latent atlases.
Med Image Anal. 2010 Oct;14(5):654-65. doi: 10.1016/j.media.2010.05.004. Epub 2010 Jun 4.
8
A hybrid geometric-statistical deformable model for automated 3-D segmentation in brain MRI.
IEEE Trans Biomed Eng. 2009 Jul;56(7):1838-48. doi: 10.1109/TBME.2009.2017509. Epub 2009 Mar 27.

本文引用的文献

1
Logarithm odds maps for shape representation.
Med Image Comput Comput Assist Interv. 2006;9(Pt 2):955-63. doi: 10.1007/11866763_117.
2
User-guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability.
Neuroimage. 2006 Jul 1;31(3):1116-28. doi: 10.1016/j.neuroimage.2006.01.015. Epub 2006 Mar 20.
3
A Bayesian model for joint segmentation and registration.
Neuroimage. 2006 May 15;31(1):228-39. doi: 10.1016/j.neuroimage.2005.11.044. Epub 2006 Feb 7.
4
Neighbor-constrained segmentation with level set based 3-D deformable models.
IEEE Trans Med Imaging. 2004 Aug;23(8):940-8. doi: 10.1109/TMI.2004.830802.
5
An adaptive level set segmentation on a triangulated mesh.
IEEE Trans Med Imaging. 2004 Feb;23(2):191-201. doi: 10.1109/TMI.2003.822823.
6
Automatically parcellating the human cerebral cortex.
Cereb Cortex. 2004 Jan;14(1):11-22. doi: 10.1093/cercor/bhg087.
7
A shape-based approach to the segmentation of medical imagery using level sets.
IEEE Trans Med Imaging. 2003 Feb;22(2):137-54. doi: 10.1109/TMI.2002.808355.
8
Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain.
Neuron. 2002 Jan 31;33(3):341-55. doi: 10.1016/s0896-6273(02)00569-x.
10
Automated model-based tissue classification of MR images of the brain.
IEEE Trans Med Imaging. 1999 Oct;18(10):897-908. doi: 10.1109/42.811270.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验