Pohl Kilian M, Kikinis Ron, Wells William M
Surgical Planning Laboratory, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA.
Inf Process Med Imaging. 2007;20:26-37. doi: 10.1007/978-3-540-73273-0_3.
We describe a new approach for estimating the posterior probability of tissue labels. Conventional likelihood models are combined with a curve length prior on boundaries, and an approximate posterior distribution on labels is sought via the Mean Field approach. Optimizing the resulting estimator by gradient descent leads to a level set style algorithm where the level set functions are the logarithm-of-odds encoding of the posterior label probabilities in an unconstrained linear vector space. Applications with more than two labels are easily accommodated. The label assignment is accomplished by the Maximum A Posteriori rule, so there are no problems of "overlap" or "vacuum". We test the method on synthetic images with additive noise. In addition, we segment a magnetic resonance scan into the major brain compartments and subcortical structures.
我们描述了一种估计组织标签后验概率的新方法。传统的似然模型与边界上的曲线长度先验相结合,并通过平均场方法寻求标签上的近似后验分布。通过梯度下降优化所得估计器会得到一种水平集风格的算法,其中水平集函数是无约束线性向量空间中后验标签概率的对数优势编码。该方法可轻松应用于具有两个以上标签的情况。标签分配通过最大后验规则完成,因此不存在“重叠”或“空白”问题。我们在带有加性噪声的合成图像上测试了该方法。此外,我们将磁共振扫描分割成主要的脑区隔和皮质下结构。