Suppr超能文献

有源平均场:在水平集框架中求解平均场近似

Active mean fields: solving the mean field approximation in the level set framework.

作者信息

Pohl Kilian M, Kikinis Ron, Wells William M

机构信息

Surgical Planning Laboratory, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA.

出版信息

Inf Process Med Imaging. 2007;20:26-37. doi: 10.1007/978-3-540-73273-0_3.

Abstract

We describe a new approach for estimating the posterior probability of tissue labels. Conventional likelihood models are combined with a curve length prior on boundaries, and an approximate posterior distribution on labels is sought via the Mean Field approach. Optimizing the resulting estimator by gradient descent leads to a level set style algorithm where the level set functions are the logarithm-of-odds encoding of the posterior label probabilities in an unconstrained linear vector space. Applications with more than two labels are easily accommodated. The label assignment is accomplished by the Maximum A Posteriori rule, so there are no problems of "overlap" or "vacuum". We test the method on synthetic images with additive noise. In addition, we segment a magnetic resonance scan into the major brain compartments and subcortical structures.

摘要

我们描述了一种估计组织标签后验概率的新方法。传统的似然模型与边界上的曲线长度先验相结合,并通过平均场方法寻求标签上的近似后验分布。通过梯度下降优化所得估计器会得到一种水平集风格的算法,其中水平集函数是无约束线性向量空间中后验标签概率的对数优势编码。该方法可轻松应用于具有两个以上标签的情况。标签分配通过最大后验规则完成,因此不存在“重叠”或“空白”问题。我们在带有加性噪声的合成图像上测试了该方法。此外,我们将磁共振扫描分割成主要的脑区隔和皮质下结构。

相似文献

3
A log-Euclidean framework for statistics on diffeomorphisms.一种用于微分同胚统计的对数欧几里得框架。
Med Image Comput Comput Assist Interv. 2006;9(Pt 1):924-31. doi: 10.1007/11866565_113.
4
Geometry driven volumetric registration.几何驱动的体积配准
Inf Process Med Imaging. 2007;20:675-86. doi: 10.1007/978-3-540-73273-0_56.
8
Using the logarithm of odds to define a vector space on probabilistic atlases.使用对数优势在概率图谱上定义向量空间。
Med Image Anal. 2007 Oct;11(5):465-77. doi: 10.1016/j.media.2007.06.003. Epub 2007 Jun 22.
9
Prior knowledge driven multiscale segmentation of brain MRI.基于先验知识的脑磁共振成像多尺度分割
Med Image Comput Comput Assist Interv. 2007;10(Pt 2):118-26. doi: 10.1007/978-3-540-75759-7_15.

引用本文的文献

1
An Optimal, Generative Model for Estimating Multi-Label Probabilistic Maps.用于估计多标签概率图谱的最优生成模型。
IEEE Trans Med Imaging. 2020 Jul;39(7):2316-2326. doi: 10.1109/TMI.2020.2968917. Epub 2020 Jan 23.
3
OPTIMAL PARAMETER MAP ESTIMATION FOR SHAPE REPRESENTATION: A GENERATIVE APPROACH.用于形状表示的最优参数映射估计:一种生成式方法。
Proc IEEE Int Symp Biomed Imaging. 2016 Apr;2016:660-663. doi: 10.1109/ISBI.2016.7493353. Epub 2016 Jun 16.
4
A Multiple Object Geometric Deformable Model for Image Segmentation.一种用于图像分割的多目标几何可变形模型
Comput Vis Image Underst. 2013 Feb 1;117(2):145-157. doi: 10.1016/j.cviu.2012.10.006.
5
A Multi-Compartment Segmentation Framework With Homeomorphic Level Sets.一种具有同胚水平集的多隔室分割框架。
Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit. 2008:1-6. doi: 10.1109/CVPR.2008.4587475.
7
Segmentation of image ensembles via latent atlases.通过潜在图谱对图像集进行分割。
Med Image Anal. 2010 Oct;14(5):654-65. doi: 10.1016/j.media.2010.05.004. Epub 2010 Jun 4.

本文引用的文献

1
Logarithm odds maps for shape representation.用于形状表示的对数几率图。
Med Image Comput Comput Assist Interv. 2006;9(Pt 2):955-63. doi: 10.1007/11866763_117.
3
A Bayesian model for joint segmentation and registration.一种用于联合分割与配准的贝叶斯模型。
Neuroimage. 2006 May 15;31(1):228-39. doi: 10.1016/j.neuroimage.2005.11.044. Epub 2006 Feb 7.
5
An adaptive level set segmentation on a triangulated mesh.三角网格上的自适应水平集分割。
IEEE Trans Med Imaging. 2004 Feb;23(2):191-201. doi: 10.1109/TMI.2003.822823.
6
Automatically parcellating the human cerebral cortex.自动分割人类大脑皮层。
Cereb Cortex. 2004 Jan;14(1):11-22. doi: 10.1093/cercor/bhg087.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验