Leon Selene, Tsiatis Anastasios A, Davidian Marie
Department of Statistics, North Carolina State University, Raleigh, North Carolina 27695-8203, USA.
Biometrics. 2003 Dec;59(4):1046-55. doi: 10.1111/j.0006-341x.2003.00120.x.
Inference on treatment effects in a pretest-posttest study is a routine objective in medicine, public health, and other fields. A number of approaches have been advocated. We take a semiparametric perspective, making no assumptions about the distributions of baseline and posttest responses. By representing the situation in terms of counterfactual random variables, we exploit recent developments in the literature on missing data and causal inference, to derive the class of all consistent treatment effect estimators, identify the most efficient such estimator, and outline strategies for implementation of estimators that may improve on popular methods. We demonstrate the methods and their properties via simulation and by application to a data set from an HIV clinical trial.
在前后测研究中对治疗效果进行推断是医学、公共卫生及其他领域的一项常规目标。已经有人提倡了多种方法。我们采用半参数视角,不对基线和后测反应的分布做任何假设。通过用反事实随机变量来描述这种情况,我们利用了关于缺失数据和因果推断的文献中的最新进展,来推导所有一致的治疗效果估计量的类别,确定此类中最有效的估计量,并概述可能比常用方法有所改进的估计量的实施策略。我们通过模拟以及将方法应用于一项HIV临床试验的数据集来展示这些方法及其性质。