Suppr超能文献

遗传网络的识别

Identification of genetic networks.

作者信息

Xiong Momiao, Li Jun, Fang Xiangzhong

机构信息

Human Genetics Center, University of Texas, Houston Health Science Center, TX 77030, USA.

出版信息

Genetics. 2004 Feb;166(2):1037-52. doi: 10.1534/genetics.166.2.1037.

Abstract

In this report, we propose the use of structural equations as a tool for identifying and modeling genetic networks and genetic algorithms for searching the most likely genetic networks that best fit the data. After genetic networks are identified, it is fundamental to identify those networks influencing cell phenotypes. To accomplish this task we extend the concept of differential expression of the genes, widely used in gene expression data analysis, to genetic networks. We propose a definition for the differential expression of a genetic network and use the generalized T2 statistic to measure the ability of genetic networks to distinguish different phenotypes. However, describing the differential expression of genetic networks is not enough for understanding biological systems because differences in the expression of genetic networks do not directly reflect regulatory strength between gene activities. Therefore, in this report we also introduce the concept of differentially regulated genetic networks, which has the potential to assess changes of gene regulation in response to perturbation in the environment and may provide new insights into the mechanism of diseases and biological processes. We propose five novel statistics to measure the differences in regulation of genetic networks. To illustrate the concepts and methods for reconstruction of genetic networks and identification of association of genetic networks with function, we applied the proposed models and algorithms to three data sets.

摘要

在本报告中,我们建议使用结构方程作为识别和构建遗传网络的工具,并使用遗传算法搜索最能拟合数据的最可能的遗传网络。在识别出遗传网络后,识别那些影响细胞表型的网络至关重要。为完成这项任务,我们将基因表达数据分析中广泛使用的基因差异表达概念扩展到遗传网络。我们提出了遗传网络差异表达的定义,并使用广义T2统计量来衡量遗传网络区分不同表型的能力。然而,描述遗传网络的差异表达对于理解生物系统是不够的,因为遗传网络表达的差异并不能直接反映基因活动之间的调控强度。因此,在本报告中,我们还引入了差异调控遗传网络的概念,它有可能评估基因调控对环境扰动的响应变化,并可能为疾病机制和生物过程提供新的见解。我们提出了五个新的统计量来衡量遗传网络调控的差异。为了说明遗传网络重建以及遗传网络与功能关联识别的概念和方法,我们将所提出的模型和算法应用于三个数据集。

相似文献

1
Identification of genetic networks.遗传网络的识别
Genetics. 2004 Feb;166(2):1037-52. doi: 10.1534/genetics.166.2.1037.
4
Network-based regulatory pathways analysis.基于网络的调控通路分析。
Bioinformatics. 2004 Sep 1;20(13):2056-66. doi: 10.1093/bioinformatics/bth201. Epub 2004 Apr 8.
7
Introduction: Cancer Gene Networks.引言:癌症基因网络
Methods Mol Biol. 2017;1513:1-9. doi: 10.1007/978-1-4939-6539-7_1.
8
Delay-independent stability of genetic regulatory networks.基因调控网络的与时滞无关稳定性
IEEE Trans Neural Netw. 2011 Nov;22(11):1685-93. doi: 10.1109/TNN.2011.2165556. Epub 2011 Sep 6.

引用本文的文献

本文引用的文献

4
Engineered gene circuits.工程化基因回路
Nature. 2002 Nov 14;420(6912):224-30. doi: 10.1038/nature01257.
7
Gene perturbation and intervention in probabilistic Boolean networks.概率布尔网络中的基因扰动与干预
Bioinformatics. 2002 Oct;18(10):1319-31. doi: 10.1093/bioinformatics/18.10.1319.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验