Suppr超能文献

嗜冷栖冷杆菌中临界温度与大分子合成及生长产量的关系

Relationship of critical temperature to macromolecular synthesis and growth yield in Psychrobacter cryopegella.

作者信息

Bakermans Corien, Nealson Kenneth H

机构信息

Center for Microbial Ecology, Michigan State University, East Lansing, Michigan 48824, USA.

出版信息

J Bacteriol. 2004 Apr;186(8):2340-5. doi: 10.1128/JB.186.8.2340-2345.2004.

Abstract

Most microorganisms isolated from low-temperature environments (below 4 degrees C) are eury-, not steno-, psychrophiles. While psychrophiles maximize or maintain growth yield at low temperatures to compensate for low growth rate, the mechanisms involved remain unknown, as does the strategy used by eurypsychrophiles to survive wide ranges of temperatures that include subzero temperatures. Our studies involve the eurypsychrophilic bacterium Psychrobacter cryopegella, which was isolated from a briny water lens within Siberian permafrost, where the temperature is -12 degrees C. P. cryopegella is capable of reproducing from -10 to 28 degrees C, with its maximum growth rate at 22 degrees C. We examined the temperature dependence of growth rate, growth yield, and macromolecular (DNA, RNA, and protein) synthesis rates for P. cryopegella. Below 22 degrees C, the growth of P. cryopegella was separated into two domains at the critical temperature (T(critical) = 4 degrees C). RNA, protein, and DNA synthesis rates decreased exponentially with decreasing temperatures. Only the temperature dependence of the DNA synthesis rate changed at T(critical). When normalized to growth rate, RNA and protein synthesis reached a minimum at T(critical), while DNA synthesis remained constant over the entire temperature range. Growth yield peaked at about T(critical) and declined rapidly as temperature decreased further. Similar to some stenopsychrophiles, P. cryopegella maximized growth yield at low temperatures and did so by streamlining growth processes at T(critical). Identifying the specific processes which result in T(critical) will be vital to understanding both low-temperature growth and growth over a wide range of temperatures.

摘要

从低温环境(低于4摄氏度)中分离出的大多数微生物是广适性嗜冷菌,而非狭适性嗜冷菌。虽然嗜冷菌在低温下最大化或维持生长产量以补偿低生长速率,但其涉及的机制仍不为人知,广适性嗜冷菌在包括零下温度在内的广泛温度范围内生存所采用的策略也是如此。我们的研究涉及广适性嗜冷菌嗜冷嗜冻杆菌,它是从西伯利亚永久冻土带内的一个盐水透镜体中分离出来的,那里的温度为零下12摄氏度。嗜冷嗜冻杆菌能够在零下10摄氏度至28摄氏度之间繁殖,其最大生长速率出现在22摄氏度。我们研究了嗜冷嗜冻杆菌生长速率、生长产量和大分子(DNA、RNA和蛋白质)合成速率对温度的依赖性。在22摄氏度以下,嗜冷嗜冻杆菌的生长在临界温度(临界温度=4摄氏度)处分为两个区域。RNA、蛋白质和DNA合成速率随温度降低呈指数下降。只有DNA合成速率对温度的依赖性在临界温度处发生变化。当以生长速率进行归一化时,RNA和蛋白质合成在临界温度处达到最小值,而DNA合成在整个温度范围内保持恒定。生长产量在大约临界温度处达到峰值,并随着温度进一步降低而迅速下降。与一些狭适性嗜冷菌类似,嗜冷嗜冻杆菌在低温下最大化生长产量,并且是通过在临界温度处简化生长过程来实现的。确定导致临界温度的具体过程对于理解低温生长以及在广泛温度范围内的生长都至关重要。

相似文献

引用本文的文献

2
The community background alters the evolution of thermal performance.群落背景会改变热性能的演变。
Evol Lett. 2024 Mar 16;8(4):505-513. doi: 10.1093/evlett/qrae007. eCollection 2024 Aug.
3
Modeled energetics of bacterial communities in ancient subzero brines.古代零下盐水环境中细菌群落的能量模型
Front Microbiol. 2023 Jul 26;14:1206641. doi: 10.3389/fmicb.2023.1206641. eCollection 2023.

本文引用的文献

4
Did psychrophilic enzymes really win the challenge?嗜冷酶真的赢得了挑战吗?
Extremophiles. 2001 Oct;5(5):313-21. doi: 10.1007/s007920100207.
5
Life in extreme environments.极端环境中的生命。
Nature. 2001 Feb 22;409(6823):1092-101. doi: 10.1038/35059215.
7
Effect of temperature on growth characteristics of Bacillus cereus TZ415.
Int J Food Microbiol. 2000 Apr 10;55(1-3):73-7. doi: 10.1016/s0168-1605(00)00197-5.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验