Suppr超能文献

终极纳米级切碎机:20S蛋白酶体核心的组装、结构与活性位点

The ultimate nanoscale mincer: assembly, structure and active sites of the 20S proteasome core.

作者信息

Heinemeyer W, Ramos P C, Dohmen R J

机构信息

Institute of Biochemistry, University of Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany.

出版信息

Cell Mol Life Sci. 2004 Jul;61(13):1562-78. doi: 10.1007/s00018-004-4130-z.

Abstract

20S proteasomes constitute the proteolytic core of large protease complexes found in all branches of life. Among these, the eukaryotic 26S proteasome ubiquitously poses as a vital final entity in regulated degradation of intracellular proteins. The composition of 20S core particles has been disclosed in detail, facilitated by groundbreaking studies on ancestral prokaryotic 20S proteasomes of low complexity and culminated in the crystal structure determination of the much more complex eukaryotic particles. This article first summarizes insights into the structural organization of the 20S core followed by characterization of its proteolytic activities, which are confined to the central cavity of the particle. In eukaryotes they reside in three different subunit types differing in their preference for cleavage sites in substrates as well as in their importance for the proteasome's cellular function. The second part reviews current knowledge on the biogenesis pathways of 20S core particles, which have to ensure not only the fixed subunit arrangement but also activation of proteolytic subunits in a late assembly state.

摘要

20S蛋白酶体构成了在生命的各个分支中发现的大型蛋白酶复合物的蛋白水解核心。其中,真核生物的26S蛋白酶体在细胞内蛋白质的调控降解中普遍作为一个至关重要的最终实体。20S核心颗粒的组成已被详细揭示,这得益于对低复杂性的原核生物祖先20S蛋白酶体的开创性研究,并最终通过对更为复杂的真核颗粒的晶体结构测定得以完善。本文首先总结了对20S核心结构组织的见解,随后对其蛋白水解活性进行了表征,这些活性局限于颗粒的中央腔。在真核生物中,它们存在于三种不同的亚基类型中,这些亚基类型在对底物切割位点的偏好以及对蛋白酶体细胞功能的重要性方面存在差异。第二部分回顾了关于20S核心颗粒生物发生途径的当前知识,这些途径不仅要确保固定的亚基排列,还要在后期组装状态下激活蛋白水解亚基。

相似文献

1
The ultimate nanoscale mincer: assembly, structure and active sites of the 20S proteasome core.
Cell Mol Life Sci. 2004 Jul;61(13):1562-78. doi: 10.1007/s00018-004-4130-z.
2
Structure and functions of the 20S and 26S proteasomes.
Annu Rev Biochem. 1996;65:801-47. doi: 10.1146/annurev.bi.65.070196.004101.
3
Substrate access and processing by the 20S proteasome core particle.
Int J Biochem Cell Biol. 2003 May;35(5):606-16. doi: 10.1016/s1357-2725(02)00390-4.
5
Structure and assembly of the 20S proteasome.
Cell Mol Life Sci. 1998 Mar;54(3):253-62. doi: 10.1007/s000180050147.
6
The proteasome.
Annu Rev Biophys Biomol Struct. 1999;28:295-317. doi: 10.1146/annurev.biophys.28.1.295.
8
The 26S proteasome of the yeast Saccharomyces cerevisiae.
FEBS Lett. 1994 Nov 21;355(1):69-75. doi: 10.1016/0014-5793(94)01177-x.
9
The 26S proteasome: a molecular machine designed for controlled proteolysis.
Annu Rev Biochem. 1999;68:1015-68. doi: 10.1146/annurev.biochem.68.1.1015.
10
Proteasomes of the yeast S. cerevisiae: genes, structure and functions.
Mol Biol Rep. 1995;21(1):3-10. doi: 10.1007/BF00990964.

引用本文的文献

3
Identification of a new class of proteasome inhibitors based on a naphthyl-azotricyclic-urea-phenyl scaffold.
RSC Med Chem. 2023 Feb 6;14(3):573-582. doi: 10.1039/d2md00404f. eCollection 2023 Mar 22.
4
Reduction in PA28αβ activation in HD mouse brain correlates to increased mHTT aggregation in cell models.
PLoS One. 2022 Dec 27;17(12):e0278130. doi: 10.1371/journal.pone.0278130. eCollection 2022.
6
Physiological Overview of the Potential Link between the UPS and Ca Signaling.
Antioxidants (Basel). 2022 May 19;11(5):997. doi: 10.3390/antiox11050997.
8
Amyotrophic Lateral Sclerosis and Autophagy: Dysfunction and Therapeutic Targeting.
Cells. 2020 Nov 4;9(11):2413. doi: 10.3390/cells9112413.
9
Charge transfer reaction mechanisms of epoxyketone and boronated peptides at glassy carbon and boron doped diamond electrodes.
J Electroanal Chem (Lausanne). 2020 Dec 1;878:114733. doi: 10.1016/j.jelechem.2020.114733. Epub 2020 Sep 30.
10
Comparative Structural Analysis of 20S Proteasome Ortholog Protein Complexes by Native Mass Spectrometry.
ACS Cent Sci. 2020 Apr 22;6(4):573-588. doi: 10.1021/acscentsci.0c00080. Epub 2020 Apr 10.

本文引用的文献

2
Review article: elevated troponin: diagnostic gold or fool's gold?
Emerg Med Australas. 2014 Apr;26(2):125-30. doi: 10.1111/1742-6723.12203.
3
Diagnostic accuracy of combined cardiac troponin and copeptin assessment for early rule-out of myocardial infarction: a systematic review and meta-analysis.
Eur Heart J Acute Cardiovasc Care. 2014 Mar;3(1):18-27. doi: 10.1177/2048872613514015. Epub 2013 Nov 20.
5
Physiology of natriuretic peptides: The volume overload hypothesis revisited.
World J Cardiol. 2014 Jan 26;6(1):4-7. doi: 10.4330/wjc.v6.i1.4.
6
Biomarkers and acute coronary syndromes: an update.
Eur Heart J. 2014 Mar;35(9):552-6. doi: 10.1093/eurheartj/eht530. Epub 2013 Dec 18.
7
Unstable angina: is it time for a requiem?
Circulation. 2013 Jun 18;127(24):2452-7. doi: 10.1161/CIRCULATIONAHA.113.001258.
10
Heart-type fatty acid-binding protein in the early diagnosis of acute myocardial infarction.
Heart. 2013 May;99(10):708-14. doi: 10.1136/heartjnl-2012-303325. Epub 2013 Mar 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验