Dempsey Jerome A, Smith Curtis A, Przybylowski Tadeuez, Chenuel Bruno, Xie Ailiang, Nakayama Hideaki, Skatrud James B
The John Rankin Laboratory of Pulmonary Medicine, Department of Population Health Sciences, University of Wisconsin-Madison, Madison, WI, 53726-2368, USA.
J Physiol. 2004 Oct 1;560(Pt 1):1-11. doi: 10.1113/jphysiol.2004.072371. Epub 2004 Jul 29.
Sleep unmasks a highly sensitive hypocapnia-induced apnoeic threshold, whereby apnoea is initiated by small transient reductions in arterial CO(2) pressure (P(aCO(2))) below eupnoea and respiratory rhythm is not restored until P(aCO(2)) has risen significantly above eupnoeic levels. We propose that the 'CO(2) reserve' (i.e. the difference in P(aCO(2)) between eupnoea and the apnoeic threshold (AT)), when combined with 'plant gain' (or the ventilatory increase required for a given reduction in P(aCO(2))) and 'controller gain' (ventilatory responsiveness to CO(2) above eupnoea) are the key determinants of breathing instability in sleep. The CO(2) reserve varies inversely with both plant gain and the slope of the ventilatory response to reduced CO(2) below eupnoea; it is highly labile in non-random eye movement (NREM) sleep. With many types of increases or decreases in background ventilatory drive and P(aCO(2)), the slope of the ventilatory response to reduced P(aCO(2)) below eupnoea remains unchanged from control. Thus, the CO(2) reserve varies inversely with plant gain, i.e. it is widened with hyperventilation and narrowed with hypoventilation, regardless of the stimulus and whether it acts primarily at the peripheral or central chemoreceptors. However, there are notable exceptions, such as hypoxia, heart failure, or increased pulmonary vascular pressures, which all increase the slope of the CO(2) response below eupnoea and narrow the CO(2) reserve despite an accompanying hyperventilation and reduced plant gain. Finally, we review growing evidence that chemoreceptor-induced instability in respiratory motor output during sleep contributes significantly to the major clinical problem of cyclical obstructive sleep apnoea.
睡眠会揭示出一个对低碳酸血症诱导的呼吸暂停阈值高度敏感的状态,即呼吸暂停由动脉血二氧化碳分压(P(aCO₂))在平静呼吸水平以下的小幅短暂下降引发,并且直到P(aCO₂)显著上升至高于平静呼吸水平时,呼吸节律才会恢复。我们提出,“二氧化碳储备”(即平静呼吸时的P(aCO₂)与呼吸暂停阈值(AT)之间的差值),与“肺系统增益”(或给定P(aCO₂)下降所需的通气增加量)以及“控制器增益”(高于平静呼吸时对二氧化碳的通气反应性)相结合,是睡眠中呼吸不稳定的关键决定因素。二氧化碳储备与肺系统增益以及低于平静呼吸时对降低的二氧化碳的通气反应斜率呈反比;它在非快速眼动(NREM)睡眠中高度不稳定。在背景通气驱动和P(aCO₂)出现多种类型的增加或减少时,低于平静呼吸时对降低的P(aCO₂)的通气反应斜率与对照相比保持不变。因此,二氧化碳储备与肺系统增益呈反比,即它在过度通气时变宽,在通气不足时变窄,无论刺激因素如何以及它主要作用于外周还是中枢化学感受器。然而,存在一些显著的例外情况,如低氧、心力衰竭或肺血管压力增加,尽管伴有过度通气和肺系统增益降低,但所有这些情况都会增加低于平静呼吸时的二氧化碳反应斜率并缩小二氧化碳储备。最后,我们回顾了越来越多的证据表明,睡眠期间化学感受器诱导的呼吸运动输出不稳定是周期性阻塞性睡眠呼吸暂停这一主要临床问题的重要原因。