Suppr超能文献

低于平静呼吸时对二氧化碳的通气反应性作为睡眠中通气稳定性的一个决定因素。

The ventilatory responsiveness to CO(2) below eupnoea as a determinant of ventilatory stability in sleep.

作者信息

Dempsey Jerome A, Smith Curtis A, Przybylowski Tadeuez, Chenuel Bruno, Xie Ailiang, Nakayama Hideaki, Skatrud James B

机构信息

The John Rankin Laboratory of Pulmonary Medicine, Department of Population Health Sciences, University of Wisconsin-Madison, Madison, WI, 53726-2368, USA.

出版信息

J Physiol. 2004 Oct 1;560(Pt 1):1-11. doi: 10.1113/jphysiol.2004.072371. Epub 2004 Jul 29.

Abstract

Sleep unmasks a highly sensitive hypocapnia-induced apnoeic threshold, whereby apnoea is initiated by small transient reductions in arterial CO(2) pressure (P(aCO(2))) below eupnoea and respiratory rhythm is not restored until P(aCO(2)) has risen significantly above eupnoeic levels. We propose that the 'CO(2) reserve' (i.e. the difference in P(aCO(2)) between eupnoea and the apnoeic threshold (AT)), when combined with 'plant gain' (or the ventilatory increase required for a given reduction in P(aCO(2))) and 'controller gain' (ventilatory responsiveness to CO(2) above eupnoea) are the key determinants of breathing instability in sleep. The CO(2) reserve varies inversely with both plant gain and the slope of the ventilatory response to reduced CO(2) below eupnoea; it is highly labile in non-random eye movement (NREM) sleep. With many types of increases or decreases in background ventilatory drive and P(aCO(2)), the slope of the ventilatory response to reduced P(aCO(2)) below eupnoea remains unchanged from control. Thus, the CO(2) reserve varies inversely with plant gain, i.e. it is widened with hyperventilation and narrowed with hypoventilation, regardless of the stimulus and whether it acts primarily at the peripheral or central chemoreceptors. However, there are notable exceptions, such as hypoxia, heart failure, or increased pulmonary vascular pressures, which all increase the slope of the CO(2) response below eupnoea and narrow the CO(2) reserve despite an accompanying hyperventilation and reduced plant gain. Finally, we review growing evidence that chemoreceptor-induced instability in respiratory motor output during sleep contributes significantly to the major clinical problem of cyclical obstructive sleep apnoea.

摘要

睡眠会揭示出一个对低碳酸血症诱导的呼吸暂停阈值高度敏感的状态,即呼吸暂停由动脉血二氧化碳分压(P(aCO₂))在平静呼吸水平以下的小幅短暂下降引发,并且直到P(aCO₂)显著上升至高于平静呼吸水平时,呼吸节律才会恢复。我们提出,“二氧化碳储备”(即平静呼吸时的P(aCO₂)与呼吸暂停阈值(AT)之间的差值),与“肺系统增益”(或给定P(aCO₂)下降所需的通气增加量)以及“控制器增益”(高于平静呼吸时对二氧化碳的通气反应性)相结合,是睡眠中呼吸不稳定的关键决定因素。二氧化碳储备与肺系统增益以及低于平静呼吸时对降低的二氧化碳的通气反应斜率呈反比;它在非快速眼动(NREM)睡眠中高度不稳定。在背景通气驱动和P(aCO₂)出现多种类型的增加或减少时,低于平静呼吸时对降低的P(aCO₂)的通气反应斜率与对照相比保持不变。因此,二氧化碳储备与肺系统增益呈反比,即它在过度通气时变宽,在通气不足时变窄,无论刺激因素如何以及它主要作用于外周还是中枢化学感受器。然而,存在一些显著的例外情况,如低氧、心力衰竭或肺血管压力增加,尽管伴有过度通气和肺系统增益降低,但所有这些情况都会增加低于平静呼吸时的二氧化碳反应斜率并缩小二氧化碳储备。最后,我们回顾了越来越多的证据表明,睡眠期间化学感受器诱导的呼吸运动输出不稳定是周期性阻塞性睡眠呼吸暂停这一主要临床问题的重要原因。

相似文献

1
The ventilatory responsiveness to CO(2) below eupnoea as a determinant of ventilatory stability in sleep.
J Physiol. 2004 Oct 1;560(Pt 1):1-11. doi: 10.1113/jphysiol.2004.072371. Epub 2004 Jul 29.
2
Effect of ventilatory drive on carbon dioxide sensitivity below eupnea during sleep.
Am J Respir Crit Care Med. 2002 May 1;165(9):1251-60. doi: 10.1164/rccm.2110041.
3
Sustained hyperoxia stabilizes breathing in healthy individuals during NREM sleep.
J Appl Physiol (1985). 2010 Nov;109(5):1378-83. doi: 10.1152/japplphysiol.00453.2010. Epub 2010 Aug 19.
4
Increased propensity for central apnea in patients with obstructive sleep apnea: effect of nasal continuous positive airway pressure.
Am J Respir Crit Care Med. 2010 Jan 15;181(2):189-93. doi: 10.1164/rccm.200810-1658OC. Epub 2009 Sep 17.
5
Effect of episodic hypoxia on the susceptibility to hypocapnic central apnea during NREM sleep.
J Appl Physiol (1985). 2010 Feb;108(2):369-77. doi: 10.1152/japplphysiol.00308.2009. Epub 2009 Nov 25.
6
Chronic intermittent hypoxia increases the CO2 reserve in sleeping dogs.
J Appl Physiol (1985). 2007 Dec;103(6):1942-9. doi: 10.1152/japplphysiol.00735.2007. Epub 2007 Oct 11.
7
Increased propensity for apnea in response to acute elevations in left atrial pressure during sleep in the dog.
J Appl Physiol (1985). 2006 Jul;101(1):76-83. doi: 10.1152/japplphysiol.01617.2005. Epub 2006 Apr 20.
8
Integration of cerebrovascular CO2 reactivity and chemoreflex control of breathing: mechanisms of regulation, measurement, and interpretation.
Am J Physiol Regul Integr Comp Physiol. 2009 May;296(5):R1473-95. doi: 10.1152/ajpregu.91008.2008. Epub 2009 Feb 11.
9
The apneic threshold during non-REM sleep in dogs: sensitivity of carotid body vs. central chemoreceptors.
J Appl Physiol (1985). 2007 Aug;103(2):578-86. doi: 10.1152/japplphysiol.00017.2007. Epub 2007 May 10.
10
The influence of gender and upper airway resistance on the ventilatory response to arousal in obstructive sleep apnoea in humans.
J Physiol. 2004 Aug 1;558(Pt 3):993-1004. doi: 10.1113/jphysiol.2004.064238. Epub 2004 Jun 24.

引用本文的文献

1
Three Decades of Managing Pediatric Obstructive Sleep Apnea Syndrome: What's Old, What's New.
Children (Basel). 2025 Jul 11;12(7):919. doi: 10.3390/children12070919.
2
Amplitude fluctuations of cerebrovascular oscillations and CSF movement desynchronize during NREM3 sleep.
J Cereb Blood Flow Metab. 2025 May 15:271678X251337637. doi: 10.1177/0271678X251337637.
4
Bidirectional association of sleep disorders with chronic kidney disease: a systematic review and meta-analysis.
Clin Kidney J. 2024 Oct 18;17(11):sfae279. doi: 10.1093/ckj/sfae279. eCollection 2024 Nov.
5
Altered control of breathing in a rat model of allergic lower airway inflammation.
J Neurophysiol. 2024 Nov 1;132(5):1650-1666. doi: 10.1152/jn.00301.2023. Epub 2024 Oct 9.
7
Carbon dioxide and MAPK signalling: towards therapy for inflammation.
Cell Commun Signal. 2023 Oct 10;21(1):280. doi: 10.1186/s12964-023-01306-x.
8
Neurofluid coupling during sleep and wake states.
Sleep Med. 2023 Oct;110:44-53. doi: 10.1016/j.sleep.2023.07.021. Epub 2023 Jul 27.
9
Pathophysiological mechanisms and therapeutic approaches in obstructive sleep apnea syndrome.
Signal Transduct Target Ther. 2023 May 25;8(1):218. doi: 10.1038/s41392-023-01496-3.
10
Sex-related Differences in Loop Gain during High-Altitude Sleep-disordered Breathing.
Ann Am Thorac Soc. 2023 Aug;20(8):1192-1200. doi: 10.1513/AnnalsATS.202211-918OC.

本文引用的文献

1
Cerebrovascular response to carbon dioxide in patients with congestive heart failure.
Am J Respir Crit Care Med. 2005 Aug 1;172(3):371-8. doi: 10.1164/rccm.200406-807OC. Epub 2005 May 18.
2
Con: sleep apnea is not an anatomic disorder.
Am J Respir Crit Care Med. 2003 Aug 1;168(3):271-2; discussion 272-3. doi: 10.1164/rccm.2305016.
3
Pro: sleep apnea is an anatomic disorder.
Am J Respir Crit Care Med. 2003 Aug 1;168(3):270-1; discussion 273. doi: 10.1164/rccm.2305014.
4
Contributions of upper airway mechanics and control mechanisms to severity of obstructive apnea.
Am J Respir Crit Care Med. 2003 Sep 15;168(6):645-58. doi: 10.1164/rccm.200302-201OC. Epub 2003 May 28.
5
Mechanisms of the cerebrovascular response to apnoea in humans.
J Physiol. 2003 Apr 1;548(Pt 1):323-32. doi: 10.1113/jphysiol.2002.029678. Epub 2003 Feb 14.
6
Carotid body denervation eliminates apnea in response to transient hypocapnia.
J Appl Physiol (1985). 2003 Jan;94(1):155-64. doi: 10.1152/japplphysiol.00722.2002. Epub 2002 Sep 20.
8
CO(2) and pH independently modulate L-type Ca(2+) current in rabbit carotid body glomus cells.
J Neurophysiol. 2002 Aug;88(2):604-12. doi: 10.1152/jn.2002.88.2.604.
9
Effect of ventilatory drive on carbon dioxide sensitivity below eupnea during sleep.
Am J Respir Crit Care Med. 2002 May 1;165(9):1251-60. doi: 10.1164/rccm.2110041.
10
Apnea-hypopnea threshold for CO2 in patients with congestive heart failure.
Am J Respir Crit Care Med. 2002 May 1;165(9):1245-50. doi: 10.1164/rccm.200110-022OC.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验