Suppr超能文献

基因敲除小鼠项目。

The knockout mouse project.

作者信息

Austin Christopher P, Battey James F, Bradley Allan, Bucan Maja, Capecchi Mario, Collins Francis S, Dove William F, Duyk Geoffrey, Dymecki Susan, Eppig Janan T, Grieder Franziska B, Heintz Nathaniel, Hicks Geoff, Insel Thomas R, Joyner Alexandra, Koller Beverly H, Lloyd K C Kent, Magnuson Terry, Moore Mark W, Nagy Andras, Pollock Jonathan D, Roses Allen D, Sands Arthur T, Seed Brian, Skarnes William C, Snoddy Jay, Soriano Philippe, Stewart David J, Stewart Francis, Stillman Bruce, Varmus Harold, Varticovski Lyuba, Verma Inder M, Vogt Thomas F, von Melchner Harald, Witkowski Jan, Woychik Richard P, Wurst Wolfgang, Yancopoulos George D, Young Stephen G, Zambrowicz Brian

机构信息

National Human Genome Research Institute, National Institutes of Health, Building 31, Room 4B09, 31 Center Drive, Bethesda, Maryland 20892, USA.

出版信息

Nat Genet. 2004 Sep;36(9):921-4. doi: 10.1038/ng0904-921.

Abstract

Mouse knockout technology provides a powerful means of elucidating gene function in vivo, and a publicly available genome-wide collection of mouse knockouts would be significantly enabling for biomedical discovery. To date, published knockouts exist for only about 10% of mouse genes. Furthermore, many of these are limited in utility because they have not been made or phenotyped in standardized ways, and many are not freely available to researchers. It is time to harness new technologies and efficiencies of production to mount a high-throughput international effort to produce and phenotype knockouts for all mouse genes, and place these resources into the public domain.

摘要

小鼠基因敲除技术为在体内阐明基因功能提供了一种强大的手段,而公开可用的全基因组小鼠基因敲除文库将极大地推动生物医学发现。迄今为止,已发表的基因敲除仅涉及约10%的小鼠基因。此外,其中许多基因敲除的实用性有限,因为它们并非以标准化方式构建或进行表型分析,而且许多资源研究人员无法免费获取。现在是时候利用新技术和提高生产效率,开展一项高通量的国际合作,为所有小鼠基因生产基因敲除并进行表型分析,并将这些资源置于公共领域了。

相似文献

1
The knockout mouse project.
Nat Genet. 2004 Sep;36(9):921-4. doi: 10.1038/ng0904-921.
2
Disease model discovery from 3,328 gene knockouts by The International Mouse Phenotyping Consortium.
Nat Genet. 2017 Aug;49(8):1231-1238. doi: 10.1038/ng.3901. Epub 2017 Jun 26.
3
High-throughput discovery of novel developmental phenotypes.
Nature. 2016 Sep 22;537(7621):508-514. doi: 10.1038/nature19356. Epub 2016 Sep 14.
4
Disrupting the male germ line to find infertility and contraception targets.
Ann Endocrinol (Paris). 2014 May;75(2):101-8. doi: 10.1016/j.ando.2014.04.006. Epub 2014 Apr 30.
5
6
A review of current large-scale mouse knockout efforts.
Genesis. 2010 Feb;48(2):73-85. doi: 10.1002/dvg.20594.
7
The International Mouse Phenotyping Consortium Web Portal, a unified point of access for knockout mice and related phenotyping data.
Nucleic Acids Res. 2014 Jan;42(Database issue):D802-9. doi: 10.1093/nar/gkt977. Epub 2013 Nov 4.
8
Laboratory mouse models for the human genome-wide associations.
PLoS One. 2010 Nov 1;5(11):e13782. doi: 10.1371/journal.pone.0013782.
10
New models for human disease from the International Mouse Phenotyping Consortium.
Mamm Genome. 2019 Jun;30(5-6):143-150. doi: 10.1007/s00335-019-09804-5. Epub 2019 May 24.

引用本文的文献

1
An integrative approach prioritizes the orphan GPR61 genomic region in tissue-specific regulation of chronotype.
Sleep Adv. 2025 May 18;6(2):zpaf030. doi: 10.1093/sleepadvances/zpaf030. eCollection 2025 Apr.
3
RTF1 mediates epigenetic control of Th17 cell differentiation via H2B monoubiquitination.
J Immunol. 2025 Feb 24;214(3):460-71. doi: 10.1093/jimmun/vkae043.
5
Commentary: The International Mouse Phenotyping Consortium: high-throughput in vivo functional annotation of the mammalian genome.
Mamm Genome. 2024 Dec;35(4):537-543. doi: 10.1007/s00335-024-10068-x. Epub 2024 Sep 10.
6
Genome Wide Conditional Mouse Knockout Resources.
Drug Discov Today Dis Models. 2016 Summer;20:3-12. doi: 10.1016/j.ddmod.2017.08.002. Epub 2017 Sep 12.
7
Adaptive genetic mechanisms in mammalian Parp1 locus.
G3 (Bethesda). 2024 Sep 4;14(9). doi: 10.1093/g3journal/jkae165.
8
Modeling normal mouse uterine contraction and placental perfusion with non-invasive longitudinal dynamic contrast enhancement MRI.
PLoS One. 2024 Jul 1;19(7):e0303957. doi: 10.1371/journal.pone.0303957. eCollection 2024.
10
Genetically modified mice as a tool for the study of human diseases.
Mol Biol Rep. 2024 Jan 18;51(1):135. doi: 10.1007/s11033-023-09066-0.

本文引用的文献

1
A public gene trap resource for mouse functional genomics.
Nat Genet. 2004 Jun;36(6):543-4. doi: 10.1038/ng0604-543.
2
Identification and validation of PDGF transcriptional targets by microarray-coupled gene-trap mutagenesis.
Nat Genet. 2004 Mar;36(3):304-12. doi: 10.1038/ng1306. Epub 2004 Feb 15.
3
To knockout in 129 or in C57BL/6: that is the question.
Trends Genet. 2004 Feb;20(2):59-62. doi: 10.1016/j.tig.2003.12.006.
4
Wnk1 kinase deficiency lowers blood pressure in mice: a gene-trap screen to identify potential targets for therapeutic intervention.
Proc Natl Acad Sci U S A. 2003 Nov 25;100(24):14109-14. doi: 10.1073/pnas.2336103100. Epub 2003 Nov 10.
5
Skeletal development: insights from targeting the mouse genome.
Lancet. 2003 Aug 16;362(9383):560-9. doi: 10.1016/S0140-6736(03)14119-0.
6
A large-scale, gene-driven mutagenesis approach for the functional analysis of the mouse genome.
Proc Natl Acad Sci U S A. 2003 Aug 19;100(17):9918-22. doi: 10.1073/pnas.1633296100. Epub 2003 Aug 6.
7
High-throughput engineering of the mouse genome coupled with high-resolution expression analysis.
Nat Biotechnol. 2003 Jun;21(6):652-9. doi: 10.1038/nbt822. Epub 2003 May 5.
8
Cardiovascular diseases: new insights from knockout mice.
Curr Opin Pharmacol. 2003 Apr;3(2):181-5. doi: 10.1016/s1471-4892(03)00017-1.
9
Transgenic RNA interference in ES cell-derived embryos recapitulates a genetic null phenotype.
Nat Biotechnol. 2003 May;21(5):559-61. doi: 10.1038/nbt813. Epub 2003 Apr 7.
10
BayGenomics: a resource of insertional mutations in mouse embryonic stem cells.
Nucleic Acids Res. 2003 Jan 1;31(1):278-81. doi: 10.1093/nar/gkg064.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验