Suppr超能文献

从定量显微镜学到自动图像理解。

From quantitative microscopy to automated image understanding.

作者信息

Huang Kai, Murphy Robert F

机构信息

Carnegie Mellon University, Center for Automated Learning and Discovery, Departments of Biological Sciences and Biomedical Engineering, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, USA.

出版信息

J Biomed Opt. 2004 Sep-Oct;9(5):893-912. doi: 10.1117/1.1779233.

Abstract

Quantitative microscopy has been extensively used in biomedical research and has provided significant insights into structure and dynamics at the cell and tissue level. The entire procedure of quantitative microscopy is comprised of specimen preparation, light absorption/reflection/emission from the specimen, microscope optical processing, optical/electrical conversion by a camera or detector, and computational processing of digitized images. Although many of the latest digital signal processing techniques have been successfully applied to compress, restore, and register digital microscope images, automated approaches for recognition and understanding of complex subcellular patterns in light microscope images have been far less widely used. We describe a systematic approach for interpreting protein subcellular distributions using various sets of subcellular location features (SLF), in combination with supervised classification and unsupervised clustering methods. These methods can handle complex patterns in digital microscope images, and the features can be applied for other purposes such as objectively choosing a representative image from a collection and performing statistical comparisons of image sets.

摘要

定量显微镜技术已在生物医学研究中得到广泛应用,并在细胞和组织水平上对结构和动力学提供了重要见解。定量显微镜的整个过程包括标本制备、标本的光吸收/反射/发射、显微镜光学处理、相机或探测器的光/电转换以及数字化图像的计算处理。尽管许多最新的数字信号处理技术已成功应用于压缩、恢复和配准数字显微镜图像,但用于识别和理解光学显微镜图像中复杂亚细胞模式的自动化方法却远未得到广泛应用。我们描述了一种系统方法,该方法使用各种亚细胞定位特征集(SLF),结合监督分类和无监督聚类方法来解释蛋白质亚细胞分布。这些方法可以处理数字显微镜图像中的复杂模式,并且这些特征可用于其他目的,例如从一组图像中客观地选择代表性图像以及对图像集进行统计比较。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验