Suppr超能文献

相似文献

1
"Sleeping beauty": quiescence in Saccharomyces cerevisiae.
Microbiol Mol Biol Rev. 2004 Jun;68(2):187-206. doi: 10.1128/MMBR.68.2.187-206.2004.
2
Stationary phase in yeast.
Curr Opin Microbiol. 2002 Dec;5(6):602-7. doi: 10.1016/s1369-5274(02)00377-6.
3
Transcriptional regulation in yeast during diauxic shift and stationary phase.
OMICS. 2010 Dec;14(6):629-38. doi: 10.1089/omi.2010.0069. Epub 2010 Sep 23.
5
Preparation and Analysis of Saccharomyces cerevisiae Quiescent Cells.
Methods Mol Biol. 2018;1686:125-135. doi: 10.1007/978-1-4939-7371-2_9.
6
Cellular quiescence in budding yeast.
Yeast. 2021 Jan;38(1):12-29. doi: 10.1002/yea.3545. Epub 2021 Jan 25.
7
The budding yeast transition to quiescence.
Yeast. 2021 Jan;38(1):30-38. doi: 10.1002/yea.3546. Epub 2021 Jan 8.
8
Saccharomyces cerevisiae in the stationary phase as a model organism--characterization at cellular and proteome level.
J Proteomics. 2011 Nov 18;74(12):2837-45. doi: 10.1016/j.jprot.2011.06.026. Epub 2011 Jul 18.
9
Ssd1 and the cell wall integrity pathway promote entry, maintenance, and recovery from quiescence in budding yeast.
Mol Biol Cell. 2019 Aug 1;30(17):2205-2217. doi: 10.1091/mbc.E19-04-0190. Epub 2019 May 29.

引用本文的文献

1
Spatial structure of yeast biofilms and the role of cell adhesion across different media.
Biofilm. 2025 Jul 14;10:100306. doi: 10.1016/j.bioflm.2025.100306. eCollection 2025 Dec.
2
Quiescence Multiverse.
Biomolecules. 2025 Jul 4;15(7):960. doi: 10.3390/biom15070960.
5
Can Unicellular Organisms Sequester a Germline? The Yeast-Germline Hypothesis.
Bioessays. 2025 Jun;47(6):e70003. doi: 10.1002/bies.70003. Epub 2025 May 2.
6
Hsp70 chaperones, Ssa1 and Ssa2, limit poly(A) binding protein aggregation.
Mol Biol Cell. 2025 Jun 1;36(6):ar66. doi: 10.1091/mbc.E25-01-0027. Epub 2025 Apr 9.
7
A four eigen-phase model of multi-omics unveils new insights into yeast metabolic cycle.
NAR Genom Bioinform. 2025 Mar 19;7(1):lqaf022. doi: 10.1093/nargab/lqaf022. eCollection 2025 Mar.
8
Live-cell synthesis of biocompatible quantum dots.
Nat Protoc. 2025 Mar 17. doi: 10.1038/s41596-024-01133-5.
9
Hsp70 chaperones, Ssa1 and Ssa2, limit poly(A) binding protein aggregation.
bioRxiv. 2025 Jan 20:2025.01.17.633617. doi: 10.1101/2025.01.17.633617.
10
The impact of phenotypic heterogeneity on fungal pathogenicity and drug resistance.
FEMS Microbiol Rev. 2025 Jan 14;49. doi: 10.1093/femsre/fuaf001.

本文引用的文献

1
TOR and PKA signaling pathways converge on the protein kinase Rim15 to control entry into G0.
Mol Cell. 2003 Dec;12(6):1607-13. doi: 10.1016/s1097-2765(03)00485-4.
2
Activation of the RAS/cyclic AMP pathway suppresses a TOR deficiency in yeast.
Mol Cell Biol. 2004 Jan;24(1):338-51. doi: 10.1128/MCB.24.1.338-351.2004.
3
Down regulation of DJ-1 enhances cell death by oxidative stress, ER stress, and proteasome inhibition.
Biochem Biophys Res Commun. 2003 Dec 26;312(4):1342-8. doi: 10.1016/j.bbrc.2003.11.056.
4
Proteomics and regulomics: the yin and yang of functional genomics.
Mass Spectrom Rev. 2004 Jan-Feb;23(1):25-33. doi: 10.1002/mas.10067.
5
Autophagy in yeast: a TOR-mediated response to nutrient starvation.
Curr Top Microbiol Immunol. 2004;279:73-84. doi: 10.1007/978-3-642-18930-2_5.
6
Nutrient signaling through TOR kinases controls gene expression and cellular differentiation in fungi.
Curr Top Microbiol Immunol. 2004;279:53-72. doi: 10.1007/978-3-642-18930-2_4.
7
Yeast TOR signaling: a mechanism for metabolic regulation.
Curr Top Microbiol Immunol. 2004;279:39-51. doi: 10.1007/978-3-642-18930-2_3.
8
The role of phosphatases in TOR signaling in yeast.
Curr Top Microbiol Immunol. 2004;279:19-38. doi: 10.1007/978-3-642-18930-2_2.
9
TOR: the first 10 years.
Curr Top Microbiol Immunol. 2004;279:1-18. doi: 10.1007/978-3-642-18930-2_1.
10
Neurofibrillary degeneration of the Alzheimer-type: an alternate pathway to neuronal apoptosis?
Biochem Pharmacol. 2003 Oct 15;66(8):1619-25. doi: 10.1016/s0006-2952(03)00533-1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验