Suppr超能文献

“睡美人”:酿酒酵母中的静止状态

"Sleeping beauty": quiescence in Saccharomyces cerevisiae.

作者信息

Gray Joseph V, Petsko Gregory A, Johnston Gerald C, Ringe Dagmar, Singer Richard A, Werner-Washburne Margaret

机构信息

Division of Molecular Genetics, Faculty of Biomedical and Life Sciences, University of Glasgow, Anderson College, 56 Dumbarton Rd., Glasgow G11 6NU, United Kingdom.

出版信息

Microbiol Mol Biol Rev. 2004 Jun;68(2):187-206. doi: 10.1128/MMBR.68.2.187-206.2004.

Abstract

The cells of organisms as diverse as bacteria and humans can enter stable, nonproliferating quiescent states. Quiescent cells of eukaryotic and prokaryotic microorganisms can survive for long periods without nutrients. This alternative state of cells is still poorly understood, yet much benefit is to be gained by understanding it both scientifically and with reference to human health. Here, we review our knowledge of one "model" quiescent cell population, in cultures of yeast grown to stationary phase in rich media. We outline the importance of understanding quiescence, summarize the properties of quiescent yeast cells, and clarify some definitions of the state. We propose that the processes by which a cell enters into, maintains viability in, and exits from quiescence are best viewed as an environmentally triggered cycle: the cell quiescence cycle. We synthesize what is known about the mechanisms by which yeast cells enter into quiescence, including the possible roles of the protein kinase A, TOR, protein kinase C, and Snf1p pathways. We also discuss selected mechanisms by which quiescent cells maintain viability, including metabolism, protein modification, and redox homeostasis. Finally, we outline what is known about the process by which cells exit from quiescence when nutrients again become available.

摘要

从细菌到人类等各种生物体的细胞都能进入稳定的、不增殖的静止状态。真核和原核微生物的静止细胞在没有营养物质的情况下可以长期存活。细胞的这种替代状态仍未得到充分理解,但从科学角度以及与人类健康相关的角度去了解它会带来诸多益处。在这里,我们回顾了我们对一种“模型”静止细胞群体的认识,即在富含培养基中生长至稳定期的酵母培养物中的静止细胞群体。我们概述了理解静止状态的重要性,总结了静止酵母细胞的特性,并阐明了该状态的一些定义。我们提出,细胞进入、维持存活以及退出静止状态的过程最好被视为一个由环境触发的循环:细胞静止循环。我们综合了关于酵母细胞进入静止状态机制的已知信息,包括蛋白激酶A、TOR、蛋白激酶C和Snf1p途径可能发挥的作用。我们还讨论了静止细胞维持存活的特定机制,包括代谢、蛋白质修饰和氧化还原稳态。最后,我们概述了关于细胞在营养物质再次可用时退出静止状态过程的已知信息。

相似文献

1
"Sleeping beauty": quiescence in Saccharomyces cerevisiae.
Microbiol Mol Biol Rev. 2004 Jun;68(2):187-206. doi: 10.1128/MMBR.68.2.187-206.2004.
2
Stationary phase in yeast.
Curr Opin Microbiol. 2002 Dec;5(6):602-7. doi: 10.1016/s1369-5274(02)00377-6.
3
Transcriptional regulation in yeast during diauxic shift and stationary phase.
OMICS. 2010 Dec;14(6):629-38. doi: 10.1089/omi.2010.0069. Epub 2010 Sep 23.
5
Preparation and Analysis of Saccharomyces cerevisiae Quiescent Cells.
Methods Mol Biol. 2018;1686:125-135. doi: 10.1007/978-1-4939-7371-2_9.
6
Cellular quiescence in budding yeast.
Yeast. 2021 Jan;38(1):12-29. doi: 10.1002/yea.3545. Epub 2021 Jan 25.
7
The budding yeast transition to quiescence.
Yeast. 2021 Jan;38(1):30-38. doi: 10.1002/yea.3546. Epub 2021 Jan 8.
8
Saccharomyces cerevisiae in the stationary phase as a model organism--characterization at cellular and proteome level.
J Proteomics. 2011 Nov 18;74(12):2837-45. doi: 10.1016/j.jprot.2011.06.026. Epub 2011 Jul 18.
9
Ssd1 and the cell wall integrity pathway promote entry, maintenance, and recovery from quiescence in budding yeast.
Mol Biol Cell. 2019 Aug 1;30(17):2205-2217. doi: 10.1091/mbc.E19-04-0190. Epub 2019 May 29.

引用本文的文献

1
Spatial structure of yeast biofilms and the role of cell adhesion across different media.
Biofilm. 2025 Jul 14;10:100306. doi: 10.1016/j.bioflm.2025.100306. eCollection 2025 Dec.
2
Quiescence Multiverse.
Biomolecules. 2025 Jul 4;15(7):960. doi: 10.3390/biom15070960.
5
Can Unicellular Organisms Sequester a Germline? The Yeast-Germline Hypothesis.
Bioessays. 2025 Jun;47(6):e70003. doi: 10.1002/bies.70003. Epub 2025 May 2.
6
Hsp70 chaperones, Ssa1 and Ssa2, limit poly(A) binding protein aggregation.
Mol Biol Cell. 2025 Jun 1;36(6):ar66. doi: 10.1091/mbc.E25-01-0027. Epub 2025 Apr 9.
7
A four eigen-phase model of multi-omics unveils new insights into yeast metabolic cycle.
NAR Genom Bioinform. 2025 Mar 19;7(1):lqaf022. doi: 10.1093/nargab/lqaf022. eCollection 2025 Mar.
8
Live-cell synthesis of biocompatible quantum dots.
Nat Protoc. 2025 Mar 17. doi: 10.1038/s41596-024-01133-5.
9
Hsp70 chaperones, Ssa1 and Ssa2, limit poly(A) binding protein aggregation.
bioRxiv. 2025 Jan 20:2025.01.17.633617. doi: 10.1101/2025.01.17.633617.
10
The impact of phenotypic heterogeneity on fungal pathogenicity and drug resistance.
FEMS Microbiol Rev. 2025 Jan 14;49. doi: 10.1093/femsre/fuaf001.

本文引用的文献

1
TOR and PKA signaling pathways converge on the protein kinase Rim15 to control entry into G0.
Mol Cell. 2003 Dec;12(6):1607-13. doi: 10.1016/s1097-2765(03)00485-4.
2
Activation of the RAS/cyclic AMP pathway suppresses a TOR deficiency in yeast.
Mol Cell Biol. 2004 Jan;24(1):338-51. doi: 10.1128/MCB.24.1.338-351.2004.
3
Down regulation of DJ-1 enhances cell death by oxidative stress, ER stress, and proteasome inhibition.
Biochem Biophys Res Commun. 2003 Dec 26;312(4):1342-8. doi: 10.1016/j.bbrc.2003.11.056.
4
Proteomics and regulomics: the yin and yang of functional genomics.
Mass Spectrom Rev. 2004 Jan-Feb;23(1):25-33. doi: 10.1002/mas.10067.
5
Autophagy in yeast: a TOR-mediated response to nutrient starvation.
Curr Top Microbiol Immunol. 2004;279:73-84. doi: 10.1007/978-3-642-18930-2_5.
6
Nutrient signaling through TOR kinases controls gene expression and cellular differentiation in fungi.
Curr Top Microbiol Immunol. 2004;279:53-72. doi: 10.1007/978-3-642-18930-2_4.
7
Yeast TOR signaling: a mechanism for metabolic regulation.
Curr Top Microbiol Immunol. 2004;279:39-51. doi: 10.1007/978-3-642-18930-2_3.
8
The role of phosphatases in TOR signaling in yeast.
Curr Top Microbiol Immunol. 2004;279:19-38. doi: 10.1007/978-3-642-18930-2_2.
9
TOR: the first 10 years.
Curr Top Microbiol Immunol. 2004;279:1-18. doi: 10.1007/978-3-642-18930-2_1.
10
Neurofibrillary degeneration of the Alzheimer-type: an alternate pathway to neuronal apoptosis?
Biochem Pharmacol. 2003 Oct 15;66(8):1619-25. doi: 10.1016/s0006-2952(03)00533-1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验