Howlett Allyn C, Breivogel Christopher S, Childers Steven R, Deadwyler Samuel A, Hampson Robert E, Porrino Linda J
Neuroscience of Drug Abuse Research Program, Julius L. Chambers Biomedical/Biotechnology Research Institute, North Carolina Central University, Durham, NC 27707, USA.
Neuropharmacology. 2004;47 Suppl 1:345-58. doi: 10.1016/j.neuropharm.2004.07.030.
Delta9-Tetrahydrocannabinol from Cannabis sativa is mimicked by cannabimimetic analogs such as CP55940 and WIN55212-2, and antagonized by rimonabant and SR144528, through G-protein-coupled receptors, CB1 in the brain, and CB2 in the immune system. Eicosanoids anandamide and 2-arachidonoylglycerol are the "endocannabinoid" agonists for these receptors. CB1 receptors are abundant in basal ganglia, hippocampus and cerebellum, and their functional activity can be mapped during behaviors using cerebral metabolism as the neuroimaging tool. CB1 receptors couple to G(i/o) to inhibit cAMP production, decrease Ca2+ conductance, increase K+ conductance, and increase mitogen-activated protein kinase activity. Functional activation of G-proteins can be imaged by [35S]GTPgammaS autoradiography. Post-synaptically generated endocannabinoids form the basis of a retrograde signaling mechanism referred to as depolarization-induced suppression of inhibition (DSI) or excitation (DSE). Under circumstances of sufficient intracellular Ca2+ (e.g., burst activity in seizures), synthesis of endocannabinoids releases a diffusible retrograde messenger to stimulate presynaptic CB1 receptors. This results in suppression of gamma-aminobutyric acid (GABA) release, thereby relieving the post-synaptic inhibition. Tolerance develops as neurons adjust both receptor number and cellular signal transduction to the chronic administration of cannabinoid drugs. Future therapeutic drug design can progress based upon our current understanding of the physiology and pharmacology of CB1, CB2 and related receptors. One very important role for CB1 antagonists will be in the treatment of craving in the disease of substance abuse.
来自大麻的Δ⁹-四氢大麻酚可被大麻模拟类似物如CP55940和WIN55212-2模拟,并被利莫那班和SR144528拮抗,它们通过G蛋白偶联受体发挥作用,大脑中的CB1受体和免疫系统中的CB2受体。类花生酸花生四烯乙醇胺和2-花生四烯酸甘油是这些受体的“内源性大麻素”激动剂。CB1受体在基底神经节、海马体和小脑中大量存在,其功能活动可在行为过程中使用脑代谢作为神经成像工具进行映射。CB1受体与G(i/o)偶联以抑制环磷酸腺苷(cAMP)产生、降低Ca²⁺电导、增加K⁺电导并增加丝裂原活化蛋白激酶活性。G蛋白的功能激活可通过[³⁵S]GTPγS放射自显影成像。突触后产生的内源性大麻素构成了一种逆行信号机制的基础,称为去极化诱导的抑制抑制(DSI)或兴奋抑制(DSE)。在细胞内Ca²⁺充足的情况下(例如癫痫发作时的爆发活动),内源性大麻素的合成会释放一种可扩散的逆行信使,以刺激突触前CB1受体。这会导致γ-氨基丁酸(GABA)释放受到抑制,从而减轻突触后抑制。随着神经元对大麻素药物长期给药进行受体数量和细胞信号转导的调整,耐受性会逐渐形成。基于我们目前对CB1、CB2及相关受体的生理学和药理学的理解,未来的治疗药物设计可以取得进展。CB1拮抗剂的一个非常重要的作用将是治疗药物滥用疾病中的渴望。