Wang Yueyou, Xu Zixuan, Mei Li, Guo Ruiqing, Zhang Jing, Zhang Tingbo, Liu Hongqi
Aerospace Research Institute of Materials and Processing Technology, Beijing 100076, China.
Huazhong School of Mechanical Science and Engineering, University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China.
Sensors (Basel). 2025 Jul 23;25(15):4548. doi: 10.3390/s25154548.
Surface defect segmentation based on deep learning has been widely applied in industrial inspection. However, two major challenges persist in specific application scenarios: first, the imbalanced area distribution between defects and the background leads to degraded segmentation performance; second, fine gaps within defects are prone to over-segmentation. To address these issues, this study proposes a two-stage image segmentation network that integrates a Defect Localization Module and a Pixel Confidence Module. In the first stage, the Defect Localization Module performs a coarse localization of defect regions and embeds the resulting feature vectors into the backbone of the second stage. In the second stage, the Pixel Confidence Module captures the probabilistic distribution of neighboring pixels, thereby refining the initial predictions. Experimental results demonstrate that the improved network achieves gains of 1.58%±0.80% in mPA, 1.35%±0.77% in mIoU on the self-built Carbon Fabric Defect Dataset and 2.66%±1.12% in mPA, 1.44%±0.79% in mIoU on the public Magnetic Tile Defect Dataset compared to the other network. These enhancements translate to more reliable automated quality assurance in industrial production environments.
基于深度学习的表面缺陷分割已在工业检测中得到广泛应用。然而,在特定应用场景中仍存在两个主要挑战:第一,缺陷与背景之间的面积分布不均衡,导致分割性能下降;第二,缺陷内部的细微间隙容易出现过分割现象。为解决这些问题,本研究提出了一种两阶段图像分割网络,该网络集成了缺陷定位模块和像素置信度模块。在第一阶段,缺陷定位模块对缺陷区域进行粗略定位,并将得到的特征向量嵌入到第二阶段的主干网络中。在第二阶段,像素置信度模块捕捉相邻像素的概率分布,从而优化初始预测。实验结果表明,与其他网络相比,改进后的网络在自建的碳纤维织物缺陷数据集上,平均像素精度(mPA)提高了1.58%±0.80%,交并比(mIoU)提高了1.35%±0.77%;在公开的磁瓦缺陷数据集上,mPA提高了2.66%±1.12%,mIoU提高了1.44%±0.79%。这些改进使得工业生产环境中的自动化质量保证更加可靠。
Sensors (Basel). 2025-7-23
Sensors (Basel). 2025-7-22
Sensors (Basel). 2025-8-5
IEEE Trans Med Imaging. 2022-8
IEEE Trans Pattern Anal Mach Intell. 2022-7
IEEE Trans Pattern Anal Mach Intell. 2020-2
IEEE Trans Pattern Anal Mach Intell. 2017-1-2
IEEE Trans Pattern Anal Mach Intell. 2016-6-6
IEEE Trans Pattern Anal Mach Intell. 2004-11