文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

用于表面缺陷分割的定位与像素置信度网络

Localization and Pixel-Confidence Network for Surface Defect Segmentation.

作者信息

Wang Yueyou, Xu Zixuan, Mei Li, Guo Ruiqing, Zhang Jing, Zhang Tingbo, Liu Hongqi

机构信息

Aerospace Research Institute of Materials and Processing Technology, Beijing 100076, China.

Huazhong School of Mechanical Science and Engineering, University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China.

出版信息

Sensors (Basel). 2025 Jul 23;25(15):4548. doi: 10.3390/s25154548.


DOI:10.3390/s25154548
PMID:40807715
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12349335/
Abstract

Surface defect segmentation based on deep learning has been widely applied in industrial inspection. However, two major challenges persist in specific application scenarios: first, the imbalanced area distribution between defects and the background leads to degraded segmentation performance; second, fine gaps within defects are prone to over-segmentation. To address these issues, this study proposes a two-stage image segmentation network that integrates a Defect Localization Module and a Pixel Confidence Module. In the first stage, the Defect Localization Module performs a coarse localization of defect regions and embeds the resulting feature vectors into the backbone of the second stage. In the second stage, the Pixel Confidence Module captures the probabilistic distribution of neighboring pixels, thereby refining the initial predictions. Experimental results demonstrate that the improved network achieves gains of 1.58%±0.80% in mPA, 1.35%±0.77% in mIoU on the self-built Carbon Fabric Defect Dataset and 2.66%±1.12% in mPA, 1.44%±0.79% in mIoU on the public Magnetic Tile Defect Dataset compared to the other network. These enhancements translate to more reliable automated quality assurance in industrial production environments.

摘要

基于深度学习的表面缺陷分割已在工业检测中得到广泛应用。然而,在特定应用场景中仍存在两个主要挑战:第一,缺陷与背景之间的面积分布不均衡,导致分割性能下降;第二,缺陷内部的细微间隙容易出现过分割现象。为解决这些问题,本研究提出了一种两阶段图像分割网络,该网络集成了缺陷定位模块和像素置信度模块。在第一阶段,缺陷定位模块对缺陷区域进行粗略定位,并将得到的特征向量嵌入到第二阶段的主干网络中。在第二阶段,像素置信度模块捕捉相邻像素的概率分布,从而优化初始预测。实验结果表明,与其他网络相比,改进后的网络在自建的碳纤维织物缺陷数据集上,平均像素精度(mPA)提高了1.58%±0.80%,交并比(mIoU)提高了1.35%±0.77%;在公开的磁瓦缺陷数据集上,mPA提高了2.66%±1.12%,mIoU提高了1.44%±0.79%。这些改进使得工业生产环境中的自动化质量保证更加可靠。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eda8/12349335/064c8769aa0a/sensors-25-04548-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eda8/12349335/570fd74b18dd/sensors-25-04548-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eda8/12349335/f7d29f3c553a/sensors-25-04548-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eda8/12349335/e3461dc6613a/sensors-25-04548-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eda8/12349335/e6e1a7fe0782/sensors-25-04548-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eda8/12349335/c49291a98f27/sensors-25-04548-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eda8/12349335/697fac115349/sensors-25-04548-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eda8/12349335/15ed8d348fa8/sensors-25-04548-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eda8/12349335/e5386b176005/sensors-25-04548-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eda8/12349335/07358eb608df/sensors-25-04548-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eda8/12349335/064c8769aa0a/sensors-25-04548-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eda8/12349335/570fd74b18dd/sensors-25-04548-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eda8/12349335/f7d29f3c553a/sensors-25-04548-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eda8/12349335/e3461dc6613a/sensors-25-04548-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eda8/12349335/e6e1a7fe0782/sensors-25-04548-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eda8/12349335/c49291a98f27/sensors-25-04548-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eda8/12349335/697fac115349/sensors-25-04548-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eda8/12349335/15ed8d348fa8/sensors-25-04548-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eda8/12349335/e5386b176005/sensors-25-04548-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eda8/12349335/07358eb608df/sensors-25-04548-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eda8/12349335/064c8769aa0a/sensors-25-04548-g010.jpg

相似文献

[1]
Localization and Pixel-Confidence Network for Surface Defect Segmentation.

Sensors (Basel). 2025-7-23

[2]
YOLO-RDM: A high accuracy and efficient algorithm for magnetic tile surface defect detection with practical applications.

PLoS One. 2025-7-18

[3]
A novel image segmentation network with multi-scale and flow-guided attention for early screening of vaginal intraepithelial neoplasia (VAIN).

Med Phys. 2025-8

[4]
LCFC-Laptop: A Benchmark Dataset for Detecting Surface Defects in Consumer Electronics.

Sensors (Basel). 2025-7-22

[5]
Diffusion semantic segmentation model: A generative model for medical image segmentation based on joint distribution.

Med Phys. 2025-7

[6]
DCMC-UNet: A Novel Segmentation Model for Carbon Traces in Oil-Immersed Transformers Improved with Dynamic Feature Fusion and Adaptive Illumination Enhancement.

Sensors (Basel). 2025-6-23

[7]
Detection of Surface Defects in Steel Based on Dual-Backbone Network: MBDNet-Attention-YOLO.

Sensors (Basel). 2025-8-5

[8]
An improved lightweight tongue segmentation model with self-attention parallel network and progressive upsampling.

Sci Rep. 2025-7-29

[9]
A superpixel based self-attention network for uterine fibroid segmentation in high intensity focused ultrasound guidance images.

Sci Rep. 2025-7-1

[10]
Multi-level channel-spatial attention and light-weight scale-fusion network (MCSLF-Net): multi-level channel-spatial attention and light-weight scale-fusion transformer for 3D brain tumor segmentation.

Quant Imaging Med Surg. 2025-7-1

本文引用的文献

[1]
Dual Encoder-Based Dynamic-Channel Graph Convolutional Network With Edge Enhancement for Retinal Vessel Segmentation.

IEEE Trans Med Imaging. 2022-8

[2]
Image Segmentation Using Deep Learning: A Survey.

IEEE Trans Pattern Anal Mach Intell. 2022-7

[3]
Focal Loss for Dense Object Detection.

IEEE Trans Pattern Anal Mach Intell. 2020-2

[4]
SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation.

IEEE Trans Pattern Anal Mach Intell. 2017-1-2

[5]
Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks.

IEEE Trans Pattern Anal Mach Intell. 2016-6-6

[6]
Statistical region merging.

IEEE Trans Pattern Anal Mach Intell. 2004-11

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索