García-González Vicente, Govantes Fernando, Porrúa Odil, Santero Eduardo
Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide, Carretera de Utrera, Km. 1, 41013, Seville, Spain.
J Bacteriol. 2005 Jan;187(1):155-67. doi: 10.1128/JB.187.1.155-167.2005.
Pseudomonas sp. strain ADP is the model strain for studying bacterial degradation of the s-triazine herbicide atrazine. In this work, we focused on the expression of the atzDEF operon, involved in mineralization of the central intermediate of the pathway, cyanuric acid. Expression analysis of atzD-lacZ fusions in Pseudomonas sp. strain ADP and Pseudomonas putida showed that atzDEF is subjected to dual regulation in response to nitrogen limitation and cyanuric acid. The gene adjacent to atzD, orf99 (renamed here atzR), encoding a LysR-like regulator, was found to be required for both responses. Expression of atzR-lacZ was induced by nitrogen limitation and repressed by AtzR. Nitrogen regulation of atzD-lacZ and atzR-lacZ expression was dependent on the alternative sigma factor sigmaN and NtrC, suggesting that the cyanuric acid degradation operon may be subject to general nitrogen control. However, while atzR is transcribed from a sigmaN-dependent promoter, atzDEF transcription appears to be driven from a sigma70-type promoter. Expression of atzR from a heterologous promoter revealed that although NtrC regulation of atzD-lacZ requires the AtzR protein, it is not the indirect result of NtrC-activated AtzR synthesis. We propose that expression of the cyanuric acid degradation operon atzDEF is controlled by means of a complex regulatory circuit in which AtzR is the main activator. AtzR activity is in turn modulated by the presence of cyanuric acid and by a nitrogen limitation signal transduced by the Ntr system.
假单胞菌属ADP菌株是研究细菌对均三嗪除草剂阿特拉津降解的模式菌株。在这项研究中,我们聚焦于atzDEF操纵子的表达,该操纵子参与了该途径的中心中间体氰尿酸的矿化作用。对假单胞菌属ADP菌株和恶臭假单胞菌中atzD - lacZ融合体的表达分析表明,atzDEF受到氮限制和氰尿酸的双重调控。发现与atzD相邻的基因orf99(在此重新命名为atzR),编码一种类LysR调节因子,是这两种响应所必需的。atzR - lacZ的表达受氮限制诱导,并被AtzR抑制。atzD - lacZ和atzR - lacZ表达的氮调控依赖于替代sigma因子sigmaN和NtrC,这表明氰尿酸降解操纵子可能受一般氮调控。然而,虽然atzR从一个依赖sigmaN的启动子转录,但atzDEF转录似乎由一个sigma70型启动子驱动。从一个异源启动子表达atzR表明,虽然atzD - lacZ的NtrC调控需要AtzR蛋白,但这并不是NtrC激活AtzR合成的间接结果。我们提出,氰尿酸降解操纵子atzDEF的表达受一个复杂调控回路控制,其中AtzR是主要激活因子。AtzR的活性又受氰尿酸的存在以及由Ntr系统转导的氮限制信号的调节。