Sherry Alissa, Henson Robin K
Counseling Psychology Program, University of Texas at Austin, USA.
J Pers Assess. 2005 Feb;84(1):37-48. doi: 10.1207/s15327752jpa8401_09.
The purpose of this article is to reduce potential statistical barriers and open doors to canonical correlation analysis (CCA) for applied behavioral scientists and personality researchers. CCA was selected for discussion, as it represents the highest level of the general linear model (GLM) and can be rather easily conceptualized as a method closely linked with the more widely understood Pearson r correlation coefficient. An understanding of CCA can lead to a more global appreciation of other univariate and multivariate methods in the GLM. We attempt to demonstrate CCA with basic language, using technical terminology only when necessary for understanding and use of the method. We present an entire example of a CCA analysis using SPSS (Version 11.0) with personality data.
本文的目的是减少潜在的统计障碍,并为应用行为科学家和人格研究者打开进行典型相关分析(CCA)的大门。之所以选择讨论CCA,是因为它代表了一般线性模型(GLM)的最高层次,并且相当容易被概念化为一种与更广泛理解的皮尔逊r相关系数紧密相关的方法。对CCA的理解可以使人们对GLM中的其他单变量和多变量方法有更全面的认识。我们尝试用基本的语言来演示CCA,仅在理解和使用该方法必要时才使用专业术语。我们给出了一个使用SPSS(版本11.0)对人格数据进行CCA分析的完整示例。