Vulto P, Glade N, Altomare L, Bablet J, Tin L Del, Medoro G, Chartier I, Manaresi N, Tartagni M, Guerrieri R
ARCES, University of Bologna, Viale Pepoli 3/2, 40123, Bologna, Italy.
Lab Chip. 2005 Feb;5(2):158-62. doi: 10.1039/b411885e. Epub 2004 Dec 3.
Microfluidic networks are patterned in a dry film resist (Ordyl SY300/550) that is sandwiched in between two substrates. The technique enables fabrication of complex biochips with active elements both in the bottom and the top substrate (hybrid chips). The resist can be double bonded at relatively low temperatures without the use of extra adhesives. A postbake transfers the resist into a rigid structure. The resist is qualified in terms of resolution, biocompatibility and fluidic sealing. Fabrication in both a fully equipped cleanroom setting as well as a minimally equipped laboratory is described. The technique is applied for dielectrophoresis-based cell separation systems and a fuel cell reaction chamber with micropillars. The dry film resist can be considered a cheap and fast alternative to SU-8.
微流体网络图案化于夹在两个基板之间的干膜光刻胶(Ordyl SY300/550)中。该技术能够制造底部和顶部基板均带有有源元件的复杂生物芯片(混合芯片)。该光刻胶可在相对较低温度下进行双键结合,无需使用额外的粘合剂。后烘焙将光刻胶转变为刚性结构。该光刻胶在分辨率、生物相容性和流体密封方面均符合要求。文中描述了在配备齐全的洁净室环境以及设备最少的实验室中的制造过程。该技术应用于基于介电泳的细胞分离系统以及带有微柱的燃料电池反应室。这种干膜光刻胶可被视为SU-8的一种廉价且快速的替代品。