Suppr超能文献

斑胸草雀大脑中抑制性中间神经元亚型的差异性行为参与

Differential behavioral engagement of inhibitory interneuron subtypes in the zebra finch brain.

作者信息

Hozhabri Ellie, Corredera Asensio Ariadna, Elmaleh Margot, Kim Jeong Woo, Phillips Matthew B, Frazel Paul W, Dimidschstein Jordane, Fishell Gord, Long Michael A

机构信息

NYU Neuroscience Institute and Department of Otolaryngology, New York University Langone Medical Center, New York, NY, USA; Center for Neural Science, New York University, New York, NY, USA.

Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, USA.

出版信息

Neuron. 2025 Feb 5;113(3):460-470.e7. doi: 10.1016/j.neuron.2024.11.003. Epub 2024 Dec 6.

Abstract

Inhibitory interneurons are highly heterogeneous circuit elements often characterized by cell biological properties, but how these factors relate to specific roles underlying complex behavior remains poorly understood. Using chronic silicon probe recordings, we demonstrate that distinct interneuron groups perform different inhibitory roles within HVC, a song production circuit in the zebra finch forebrain. To link these functional subtypes to molecular identity, we performed two-photon targeted electrophysiological recordings of HVC interneurons followed by post hoc immunohistochemistry of subtype-specific markers. We find that parvalbumin-expressing interneurons are highly modulated by sensory input and likely mediate auditory gating, whereas a more heterogeneous set of somatostatin-expressing interneurons can strongly regulate activity based on arousal. Using this strategy, we uncover important cell-type-specific network functions in the context of an ethologically relevant motor skill.

摘要

抑制性中间神经元是高度异质性的神经回路元件,通常以细胞生物学特性为特征,但这些因素如何与复杂行为背后的特定作用相关联仍知之甚少。通过慢性硅探针记录,我们证明不同的中间神经元群体在HVC(斑胸草雀前脑的一个发声回路)中发挥不同的抑制作用。为了将这些功能亚型与分子身份联系起来,我们对HVC中间神经元进行了双光子靶向电生理记录,随后对亚型特异性标记物进行了事后免疫组织化学分析。我们发现,表达小白蛋白的中间神经元受到感觉输入的高度调节,可能介导听觉门控,而一组更具异质性的表达生长抑素的中间神经元可以根据觉醒状态强烈调节活动。使用这种策略,我们在与行为学相关的运动技能背景下发现了重要的细胞类型特异性网络功能。

相似文献

1
Differential behavioral engagement of inhibitory interneuron subtypes in the zebra finch brain.
Neuron. 2025 Feb 5;113(3):460-470.e7. doi: 10.1016/j.neuron.2024.11.003. Epub 2024 Dec 6.
2
Interplay of inhibition and excitation shapes a premotor neural sequence.
J Neurosci. 2015 Jan 21;35(3):1217-27. doi: 10.1523/JNEUROSCI.4346-14.2015.
3
A distributed neural network model for the distinct roles of medial and lateral HVC in zebra finch song production.
J Neurophysiol. 2017 Aug 1;118(2):677-692. doi: 10.1152/jn.00917.2016. Epub 2017 Apr 5.
4
State and neuronal class-dependent reconfiguration in the avian song system.
J Neurophysiol. 2003 Mar;89(3):1688-701. doi: 10.1152/jn.00655.2002.
5
The HVC microcircuit: the synaptic basis for interactions between song motor and vocal plasticity pathways.
J Neurosci. 2005 Feb 23;25(8):1952-64. doi: 10.1523/JNEUROSCI.3726-04.2005.
6
Singing modulates parvalbumin interneurons throughout songbird forebrain vocal control circuitry.
PLoS One. 2017 Feb 24;12(2):e0172944. doi: 10.1371/journal.pone.0172944. eCollection 2017.
7
Cortical interneurons that specialize in disinhibitory control.
Nature. 2013 Nov 28;503(7477):521-4. doi: 10.1038/nature12676. Epub 2013 Oct 6.
8
Inhibition by Somatostatin Interneurons in Olfactory Cortex.
Front Neural Circuits. 2016 Aug 17;10:62. doi: 10.3389/fncir.2016.00062. eCollection 2016.
9
Inhibitory Gating of Basolateral Amygdala Inputs to the Prefrontal Cortex.
J Neurosci. 2016 Sep 7;36(36):9391-406. doi: 10.1523/JNEUROSCI.0874-16.2016.
10
Neuron-specific cholinergic modulation of a forebrain song control nucleus.
J Neurophysiol. 2010 Feb;103(2):733-45. doi: 10.1152/jn.00803.2009. Epub 2009 Nov 25.

引用本文的文献

1
Modelling human brain development and disease with organoids.
Nat Rev Mol Cell Biol. 2025 May;26(5):389-412. doi: 10.1038/s41580-024-00804-1. Epub 2024 Dec 12.

本文引用的文献

1
Functional specialization of hippocampal somatostatin-expressing interneurons.
Proc Natl Acad Sci U S A. 2024 Apr 23;121(17):e2306382121. doi: 10.1073/pnas.2306382121. Epub 2024 Apr 19.
2
Uncoordinated sleep replay across hemispheres in the zebra finch.
Curr Biol. 2023 Nov 6;33(21):4704-4712.e3. doi: 10.1016/j.cub.2023.09.005. Epub 2023 Sep 26.
3
A cell-type-specific error-correction signal in the posterior parietal cortex.
Nature. 2023 Aug;620(7973):366-373. doi: 10.1038/s41586-023-06357-1. Epub 2023 Jul 19.
4
Cortical somatostatin interneuron subtypes form cell-type-specific circuits.
Neuron. 2023 Sep 6;111(17):2675-2692.e9. doi: 10.1016/j.neuron.2023.05.032. Epub 2023 Jun 29.
5
Thalamus drives vocal onsets in the zebra finch courtship song.
Nature. 2023 Apr;616(7955):132-136. doi: 10.1038/s41586-023-05818-x. Epub 2023 Mar 22.
6
Methods and applications for single-cell and spatial multi-omics.
Nat Rev Genet. 2023 Aug;24(8):494-515. doi: 10.1038/s41576-023-00580-2. Epub 2023 Mar 2.
7
A transcriptomic axis predicts state modulation of cortical interneurons.
Nature. 2022 Jul;607(7918):330-338. doi: 10.1038/s41586-022-04915-7. Epub 2022 Jul 6.
8
A feedforward inhibitory premotor circuit for auditory-vocal interactions in zebra finches.
Proc Natl Acad Sci U S A. 2022 Jun 7;119(23):e2118448119. doi: 10.1073/pnas.2118448119. Epub 2022 Jun 3.
9
Dense functional and molecular readout of a circuit hub in sensory cortex.
Science. 2022 Jan 7;375(6576):eabl5981. doi: 10.1126/science.abl5981.
10
Sleep replay reveals premotor circuit structure for a skilled behavior.
Neuron. 2021 Dec 1;109(23):3851-3861.e4. doi: 10.1016/j.neuron.2021.09.021. Epub 2021 Oct 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验