Suppr超能文献

Pf1噬菌体温度转变的结构基础

Structural basis of the temperature transition of Pf1 bacteriophage.

作者信息

Thiriot David S, Nevzorov Alexander A, Opella Stanley J

机构信息

Department of Chemistry and Biochemistry, University of California-San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0307, USA.

出版信息

Protein Sci. 2005 Apr;14(4):1064-70. doi: 10.1110/ps.041220305. Epub 2005 Mar 1.

Abstract

The filamentous bacteriophage Pf1 undergoes a reversible temperature-dependent transition that is also influenced by salt concentrations. This structural responsiveness may be a manifestation of the important biological property of flexibility, which is necessary for long, thin filamentous assemblies as a protection against shear forces. To investigate structural changes in the major coat protein, one- and two-dimensional solid-state NMR spectra of concentrated solutions of Pf1 bacteriophage were acquired, and the structure of the coat protein determined at 0 degrees C was compared with the structure previously determined at 30 degrees C. Despite dramatic differences in the NMR spectra, the overall change in the coat protein structure is small. Changes in the orientation of the C-terminal helical segment and the conformation of the first five residues at the N-terminus are apparent. These results are consistent with prior studies by X-ray fiber diffraction and other biophysical methods.

摘要

丝状噬菌体Pf1会发生可逆的温度依赖性转变,这种转变也受盐浓度的影响。这种结构响应性可能是柔韧性这一重要生物学特性的体现,对于长而细的丝状聚集体来说,柔韧性是抵御剪切力所必需的。为了研究主要衣壳蛋白的结构变化,我们获取了Pf1噬菌体浓缩溶液的一维和二维固态核磁共振谱,并将0摄氏度时测定的衣壳蛋白结构与之前在30摄氏度时测定的结构进行了比较。尽管核磁共振谱存在显著差异,但衣壳蛋白结构的总体变化很小。C末端螺旋段的取向和N末端前五个残基的构象发生了明显变化。这些结果与之前通过X射线纤维衍射和其他生物物理方法进行的研究一致。

相似文献

1
Structural basis of the temperature transition of Pf1 bacteriophage.
Protein Sci. 2005 Apr;14(4):1064-70. doi: 10.1110/ps.041220305. Epub 2005 Mar 1.
2
Structure of the coat protein in Pf1 bacteriophage determined by solid-state NMR spectroscopy.
J Mol Biol. 2004 Aug 13;341(3):869-79. doi: 10.1016/j.jmb.2004.06.038.
4
The molecular structure and structural transition of the alpha-helical capsid in filamentous bacteriophage Pf1.
Acta Crystallogr D Biol Crystallogr. 2000 Feb;56(Pt 2):137-50. doi: 10.1107/s0907444999015334.
5
Structure of the coat protein in fd filamentous bacteriophage particles determined by solid-state NMR spectroscopy.
Proc Natl Acad Sci U S A. 2003 May 27;100(11):6458-63. doi: 10.1073/pnas.1132059100. Epub 2003 May 15.
6
Mechanistic insights into water-protein interactions of filamentous bacteriophage.
J Phys Chem B. 2013 Mar 14;117(10):2837-40. doi: 10.1021/jp310921n. Epub 2013 Mar 1.
7
NMR studies of the structure and dynamics of membrane-bound bacteriophage Pf1 coat protein.
Science. 1991 May 31;252(5010):1303-5. doi: 10.1126/science.1925542.
9
Consensus structure of Pf1 filamentous bacteriophage from X-ray fibre diffraction and solid-state NMR.
Eur Biophys J. 2011 Mar;40(3):221-34. doi: 10.1007/s00249-010-0640-9. Epub 2010 Nov 17.
10
Pf1 bacteriophage hydration by magic angle spinning solid-state NMR.
J Chem Phys. 2014 Dec 14;141(22):22D533. doi: 10.1063/1.4903230.

引用本文的文献

2
Validation of protein backbone structures calculated from NMR angular restraints using Rosetta.
J Biomol NMR. 2019 May;73(5):229-244. doi: 10.1007/s10858-019-00251-7. Epub 2019 May 10.
3
Application of filamentous phages in environment: A tectonic shift in the science and practice of ecorestoration.
Ecol Evol. 2019 Jan 25;9(4):2263-2304. doi: 10.1002/ece3.4743. eCollection 2019 Feb.
5
Increasing Binding Efficiency via Reporter Shape and Flux in a Viral Nanoparticle Lateral-Flow Assay.
ACS Appl Mater Interfaces. 2017 Mar 1;9(8):6878-6884. doi: 10.1021/acsami.6b15728. Epub 2017 Feb 15.
6
Structural biology of supramolecular assemblies by magic-angle spinning NMR spectroscopy.
Q Rev Biophys. 2017 Jan;50:e1. doi: 10.1017/S0033583516000159.
7
The hydrophobic temperature dependence of amino acids directly calculated from protein structures.
PLoS Comput Biol. 2015 May 22;11(5):e1004277. doi: 10.1371/journal.pcbi.1004277. eCollection 2015 May.
8
Magic angle spinning NMR of viruses.
Prog Nucl Magn Reson Spectrosc. 2015 Apr;86-87:21-40. doi: 10.1016/j.pnmrs.2015.02.003. Epub 2015 Feb 16.
9
NMR structures of membrane proteins in phospholipid bilayers.
Q Rev Biophys. 2014 Aug;47(3):249-83. doi: 10.1017/S0033583514000080. Epub 2014 Jul 17.
10
Experiments optimized for magic angle spinning and oriented sample solid-state NMR of proteins.
J Phys Chem B. 2013 Oct 17;117(41):12422-31. doi: 10.1021/jp407154h. Epub 2013 Oct 7.

本文引用的文献

1
Structure of the coat protein in Pf1 bacteriophage determined by solid-state NMR spectroscopy.
J Mol Biol. 2004 Aug 13;341(3):869-79. doi: 10.1016/j.jmb.2004.06.038.
3
Dipolar Waves as NMR maps of helices in proteins.
J Magn Reson. 2003 Aug;163(2):288-99. doi: 10.1016/s1090-7807(03)00119-8.
4
Dipolar waves map the structure and topology of helices in membrane proteins.
J Am Chem Soc. 2003 Jul 23;125(29):8928-35. doi: 10.1021/ja034211q.
5
Structure of the coat protein in fd filamentous bacteriophage particles determined by solid-state NMR spectroscopy.
Proc Natl Acad Sci U S A. 2003 May 27;100(11):6458-63. doi: 10.1073/pnas.1132059100. Epub 2003 May 15.
7
Structural fitting of PISEMA spectra of aligned proteins.
J Magn Reson. 2003 Jan;160(1):33-9. doi: 10.1016/s1090-7807(02)00138-6.
9
Dipolar waves as NMR maps of protein structure.
J Am Chem Soc. 2002 Apr 24;124(16):4206-7. doi: 10.1021/ja0178665.
10
Imaging membrane protein helical wheels.
J Magn Reson. 2000 May;144(1):162-7. doi: 10.1006/jmre.2000.2037.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验