Suppr超能文献

使用基于知识的方法在药物警戒中实现自动信号生成。

Implementation of automated signal generation in pharmacovigilance using a knowledge-based approach.

作者信息

Bousquet Cédric, Henegar Corneliu, Louët Agnès Lillo-Le, Degoulet Patrice, Jaulent Marie-Christine

机构信息

INSERM U729, Faculté de médecine Broussais Hôtel Dieu, 15 rue de l'Ecole de Médecine, 75006 Paris, France.

出版信息

Int J Med Inform. 2005 Aug;74(7-8):563-71. doi: 10.1016/j.ijmedinf.2005.04.006.

Abstract

Automated signal generation is a growing field in pharmacovigilance that relies on data mining of huge spontaneous reporting systems for detecting unknown adverse drug reactions (ADR). Previous implementations of quantitative techniques did not take into account issues related to the medical dictionary for regulatory activities (MedDRA) terminology used for coding ADRs. MedDRA is a first generation terminology lacking formal definitions; grouping of similar medical conditions is not accurate due to taxonomic limitations. Our objective was to build a data-mining tool that improves signal detection algorithms by performing terminological reasoning on MedDRA codes described with the DAML+OIL description logic. We propose the PharmaMiner tool that implements quantitative techniques based on underlying statistical and bayesian models. It is a JAVA application displaying results in tabular format and performing terminological reasoning with the Racer inference engine. The mean frequency of drug-adverse effect associations in the French database was 2.66. Subsumption reasoning based on MedDRA taxonomical hierarchy produced a mean number of occurrence of 2.92 versus 3.63 (p < 0.001) obtained with a combined technique using subsumption and approximate matching reasoning based on the ontological structure. Semantic integration of terminological systems with data mining methods is a promising technique for improving machine learning in medical databases.

摘要

自动信号生成是药物警戒领域中一个不断发展的方向,它依赖于对庞大的自发报告系统进行数据挖掘,以检测未知的药物不良反应(ADR)。以往定量技术的应用没有考虑到与用于对ADR进行编码的监管活动医学词典(MedDRA)术语相关的问题。MedDRA是第一代术语,缺乏正式定义;由于分类学限制,相似医疗状况的分组并不准确。我们的目标是构建一个数据挖掘工具,通过对用DAML+OIL描述逻辑描述的MedDRA代码进行术语推理,来改进信号检测算法。我们提出了PharmaMiner工具,它基于基础统计和贝叶斯模型实现定量技术。它是一个Java应用程序,以表格形式显示结果,并使用Racer推理引擎进行术语推理。法国数据库中药物 - 不良反应关联的平均频率为2.66。基于MedDRA分类层次的包含推理得出的平均出现次数为2.92,而使用基于本体结构的包含和近似匹配推理的组合技术得出的平均出现次数为3.63(p < 0.001)。术语系统与数据挖掘方法的语义集成是改进医学数据库中机器学习的一种有前景的技术。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验