Suppr超能文献

光滑念珠菌中一种出奇大的核糖核酸酶P RNA。

A surprisingly large RNase P RNA in Candida glabrata.

作者信息

Kachouri Rym, Stribinskis Vilius, Zhu Yanglong, Ramos Kenneth S, Westhof Eric, Li Yong

机构信息

Department of Biochemistry and Molecular Biology, and Center for Genetics and Molecular Medicine School of Medicine, University of Louisville, 319 Abraham Flexner Way, Louisville, KY 40202, USA.

出版信息

RNA. 2005 Jul;11(7):1064-72. doi: 10.1261/rna.2130705.

Abstract

We have found an extremely large ribonuclease P (RNase P) RNA (RPR1) in the human pathogen Candida glabrata and verified that this molecule is expressed and present in the active enzyme complex of this hemiascomycete yeast. A structural alignment of the C. glabrata sequence with 36 other hemiascomycete RNase P RNAs (abbreviated as P RNAs) allows us to characterize the types of insertions. In addition, 15 P RNA sequences were newly characterized by searching in the recently sequenced genomes Candida albicans, C. glabrata, Debaryomyces hansenii, Eremothecium gossypii, Kluyveromyces lactis, Kluyveromyces waltii, Naumovia castellii, Saccharomyces kudriavzevii, Saccharomyces mikatae, and Yarrowia lipolytica; and by PCR amplification for other Candida species (Candida guilliermondii, Candida krusei, Candida parapsilosis, Candida stellatoidea, and Candida tropicalis). The phylogenetic comparative analysis identifies a hemiascomycete secondary structure consensus that presents a conserved core in all species with variable insertions or deletions. The most significant variability is found in C. glabrata P RNA in which three insertions exceeding in total 700 nt are present in the Specificity domain. This P RNA is more than twice the length of any other homologous P RNAs known in the three domains of life and is eight times the size of the smallest. RNase P RNA, therefore, represents one of the most diversified noncoding RNAs in terms of size variation and structural diversity.

摘要

我们在人类病原体光滑念珠菌中发现了一种极大的核糖核酸酶P(RNase P)RNA(RPR1),并证实该分子在这种半子囊菌酵母的活性酶复合物中表达且存在。将光滑念珠菌序列与其他36种半子囊菌RNase P RNA(简称为P RNA)进行结构比对,使我们能够对插入类型进行特征描述。此外,通过在白色念珠菌、光滑念珠菌、汉逊德巴利酵母、棉阿舒囊霉、乳酸克鲁维酵母、瓦氏克鲁维酵母、卡氏瑙莫维亚酵母、库德里亚夫齐酵母、米卡塔酵母和解脂耶氏酵母等最近测序的基因组中搜索,以及对其他念珠菌属物种(季也蒙念珠菌、克柔念珠菌、近平滑念珠菌、星状念珠菌和热带念珠菌)进行PCR扩增,新鉴定了15个P RNA序列。系统发育比较分析确定了一种半子囊菌二级结构共有序列,该序列在所有物种中呈现出一个保守核心,伴有可变的插入或缺失。在光滑念珠菌P RNA中发现了最显著的变异性,其特异性结构域中存在三个总共超过700 nt的插入。这种P RNA的长度是生命三域中已知的任何其他同源P RNA的两倍多,是最小的RNase P RNA大小的八倍。因此,就大小变化和结构多样性而言,RNase P RNA代表了最多样化的非编码RNA之一。

相似文献

1
A surprisingly large RNase P RNA in Candida glabrata.
RNA. 2005 Jul;11(7):1064-72. doi: 10.1261/rna.2130705.
2
Large telomerase RNA, telomere length heterogeneity and escape from senescence in Candida glabrata.
FEBS Lett. 2009 Nov 19;583(22):3605-10. doi: 10.1016/j.febslet.2009.10.034. Epub 2009 Oct 17.
4
Molecular modeling of the three-dimensional architecture of the RNA component of yeast RNase MRP.
J Mol Biol. 1999 Oct 1;292(4):827-36. doi: 10.1006/jmbi.1999.3116.
6
Sequence analysis of RNase MRP RNA reveals its origination from eukaryotic RNase P RNA.
RNA. 2006 May;12(5):699-706. doi: 10.1261/rna.2284906. Epub 2006 Mar 15.
7
Multiplex real-time PCR targeting the RNase P RNA gene for detection and identification of Candida species in blood.
J Clin Microbiol. 2007 Mar;45(3):874-80. doi: 10.1128/JCM.01556-06. Epub 2007 Jan 10.
8
Analysis of conserved positions in nuclear RNase P RNA.
Nucleic Acids Symp Ser. 1995(33):89-91.

引用本文的文献

1
Interaction Networks of Ribosomal Expansion Segments in Kinetoplastids.
Subcell Biochem. 2021;96:433-450. doi: 10.1007/978-3-030-58971-4_13.
2
Piece by piece: Building a ribozyme.
J Biol Chem. 2020 Feb 21;295(8):2313-2323. doi: 10.1074/jbc.REV119.009929. Epub 2020 Jan 17.
3
Revisiting the Closed-Loop Model and the Nature of mRNA 5'-3' Communication.
Mol Cell. 2018 Dec 6;72(5):805-812. doi: 10.1016/j.molcel.2018.10.047.
4
Genome Diversity and Evolution in the Budding Yeasts (Saccharomycotina).
Genetics. 2017 Jun;206(2):717-750. doi: 10.1534/genetics.116.199216.
5
Structural Roles of Noncoding RNAs in the Heart of Enzymatic Complexes.
Biochemistry. 2017 Jan 10;56(1):3-13. doi: 10.1021/acs.biochem.6b01106. Epub 2016 Dec 29.
6
Defining the transcriptomic landscape of Candida glabrata by RNA-Seq.
Nucleic Acids Res. 2015 Feb 18;43(3):1392-406. doi: 10.1093/nar/gku1357. Epub 2015 Jan 13.
8
Genome structure and dynamics of the yeast pathogen Candida glabrata.
FEMS Yeast Res. 2014 Jun;14(4):529-35. doi: 10.1111/1567-1364.12145. Epub 2014 Mar 10.
9
Comparative genomics of emerging pathogens in the Candida glabrata clade.
BMC Genomics. 2013 Sep 14;14:623. doi: 10.1186/1471-2164-14-623.
10
Archaeal/eukaryal RNase P: subunits, functions and RNA diversification.
Nucleic Acids Res. 2010 Dec;38(22):7885-94. doi: 10.1093/nar/gkq701. Epub 2010 Aug 16.

本文引用的文献

1
Rfam: annotating non-coding RNAs in complete genomes.
Nucleic Acids Res. 2005 Jan 1;33(Database issue):D121-4. doi: 10.1093/nar/gki081.
2
Basis for structural diversity in homologous RNAs.
Science. 2004 Oct 1;306(5693):104-7. doi: 10.1126/science.1101489.
3
In search of RNase P RNA from microbial genomes.
RNA. 2004 Oct;10(10):1533-40. doi: 10.1261/rna.7970404. Epub 2004 Aug 30.
4
Genome evolution in yeasts.
Nature. 2004 Jul 1;430(6995):35-44. doi: 10.1038/nature02579.
5
The diploid genome sequence of Candida albicans.
Proc Natl Acad Sci U S A. 2004 May 11;101(19):7329-34. doi: 10.1073/pnas.0401648101. Epub 2004 May 3.
6
Proof and evolutionary analysis of ancient genome duplication in the yeast Saccharomyces cerevisiae.
Nature. 2004 Apr 8;428(6983):617-24. doi: 10.1038/nature02424. Epub 2004 Mar 7.
7
The Ashbya gossypii genome as a tool for mapping the ancient Saccharomyces cerevisiae genome.
Science. 2004 Apr 9;304(5668):304-7. doi: 10.1126/science.1095781. Epub 2004 Mar 4.
10
Mfold web server for nucleic acid folding and hybridization prediction.
Nucleic Acids Res. 2003 Jul 1;31(13):3406-15. doi: 10.1093/nar/gkg595.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验