Li Xiao-jun, Yi Eugene C, Kemp Christopher J, Zhang Hui, Aebersold Ruedi
Institute for Systems Biology, Seattle, Washington 98103-8904, USA.
Mol Cell Proteomics. 2005 Sep;4(9):1328-40. doi: 10.1074/mcp.M500141-MCP200. Epub 2005 Jul 26.
There is an increasing interest in the quantitative proteomic measurement of the protein contents of substantially similar biological samples, e.g. for the analysis of cellular response to perturbations over time or for the discovery of protein biomarkers from clinical samples. Technical limitations of current proteomic platforms such as limited reproducibility and low throughput make this a challenging task. A new LC-MS-based platform is able to generate complex peptide patterns from the analysis of proteolyzed protein samples at high throughput and represents a promising approach for quantitative proteomics. A crucial component of the LC-MS approach is the accurate evaluation of the abundance of detected peptides over many samples and the identification of peptide features that can stratify samples with respect to their genetic, physiological, or environmental origins. We present here a new software suite, SpecArray, that generates a peptide versus sample array from a set of LC-MS data. A peptide array stores the relative abundance of thousands of peptide features in many samples and is in a format identical to that of a gene expression microarray. A peptide array can be subjected to an unsupervised clustering analysis to stratify samples or to a discriminant analysis to identify discriminatory peptide features. We applied the SpecArray to analyze two sets of LC-MS data: one was from four repeat LC-MS analyses of the same glycopeptide sample, and another was from LC-MS analysis of serum samples of five male and five female mice. We demonstrate through these two study cases that the SpecArray software suite can serve as an effective software platform in the LC-MS approach for quantitative proteomics.
对于基本相似的生物样品的蛋白质含量进行定量蛋白质组学测量的兴趣与日俱增,例如用于分析细胞随时间对扰动的反应,或用于从临床样品中发现蛋白质生物标志物。当前蛋白质组学平台的技术局限性,如有限的重现性和低通量,使得这成为一项具有挑战性的任务。一种基于液相色谱-质谱联用(LC-MS)的新平台能够在高通量下从经蛋白酶解的蛋白质样品分析中生成复杂的肽图谱,是定量蛋白质组学的一种有前景的方法。LC-MS方法的一个关键组成部分是准确评估在许多样品中检测到的肽的丰度,并识别能够根据样品的遗传、生理或环境来源对样品进行分层的肽特征。我们在此展示了一个新的软件套件SpecArray,它从一组LC-MS数据生成肽与样品阵列。肽阵列存储了许多样品中数千个肽特征的相对丰度,并且格式与基因表达微阵列相同。肽阵列可以进行无监督聚类分析以对样品进行分层,或进行判别分析以识别有区分性的肽特征。我们应用SpecArray分析了两组LC-MS数据:一组来自同一糖肽样品的四次重复LC-MS分析,另一组来自五只雄性和五只雌性小鼠血清样品的LC-MS分析。我们通过这两个研究案例证明,SpecArray软件套件可以作为LC-MS定量蛋白质组学方法中的一个有效软件平台。