Suppr超能文献

燃烧产生的超细颗粒物将有机毒物输送到目标呼吸细胞。

Combustion-derived ultrafine particles transport organic toxicants to target respiratory cells.

作者信息

Penn Arthur, Murphy Gleeson, Barker Steven, Henk William, Penn Lynn

机构信息

Department of Comparative Biomedical Sciences, Louisiana State University, School of Veterinary Medicine, Baton Rouge, Louisiana 70803, USA.

出版信息

Environ Health Perspect. 2005 Aug;113(8):956-63. doi: 10.1289/ehp.7661.

Abstract

Epidemiologic evidence supports associations between inhalation of fine and ultrafine ambient particulate matter [aerodynamic diameter < or = 2.5 microm (PM2.5)] and increases in cardiovascular/respiratory morbidity and mortality. Less attention has been paid to how the physical and chemical characteristics of these particles may influence their interactions with target cells. Butadiene soot (BDS), produced during combustion of the high-volume petrochemical 1,3-butadiene, is rich in polynuclear aromatic hydrocarbons (PAHs), including known carcinogens. We conducted experiments to characterize BDS with respect to particle size distribution, assembly, PAH composition, elemental content, and interaction with respiratory epithelial cells. Freshly generated, intact BDS is primarily (> 90%) PAH-rich, metals-poor (nickel, chromium, and vanadium concentrations all < 1 ppm) PM2.5, composed of uniformly sized, solid spheres (30-50 nm) in aggregated form. Cells of a human bronchial epithelial cell line (BEAS-2B) exhibit sequential fluorescent responses--a relatively rapid (approximately 30 min), bright but diffuse fluorescence followed by the slower (2-4 hr) appearance of punctate cytoplasmic fluorescence--after BDS is added to medium overlying the cells. The fluorescence is associated with PAH localization in the cells. The ultrafine BDS particles move down through the medium to the cell membrane. Fluorescent PAHs are transferred from the particle surface to the cell membrane, cross the membrane into the cytosol, and appear to accumulate in lipid vesicles. There is no evidence that BDS particles pass into the cells. The results demonstrate that uptake of airborne ultrafine particles by target cells is not necessary for transfer of toxicants from the particles to the cells.

摘要

流行病学证据支持吸入细颗粒物和超细环境颗粒物[空气动力学直径≤2.5微米(PM2.5)]与心血管/呼吸系统发病率和死亡率增加之间存在关联。这些颗粒物的物理和化学特性如何影响它们与靶细胞的相互作用,受到的关注较少。在大量石化产品1,3 - 丁二烯燃烧过程中产生的丁二烯烟灰(BDS)富含多环芳烃(PAH),包括已知的致癌物。我们进行了实验,以表征BDS在粒径分布、团聚、PAH组成、元素含量以及与呼吸道上皮细胞相互作用方面的特性。新生成的完整BDS主要是(>90%)富含PAH、贫金属(镍、铬和钒浓度均<1 ppm)的PM2.5,由大小均匀的实心球体(30 - 50纳米)以聚集形式组成。将BDS添加到覆盖在人支气管上皮细胞系(BEAS - 2B)细胞上的培养基中后,细胞会呈现出连续的荧光反应——相对快速(约30分钟)、明亮但弥散的荧光,随后是较慢(2 - 4小时)出现的点状细胞质荧光。这种荧光与细胞内PAH的定位有关。超细BDS颗粒向下穿过培养基到达细胞膜。荧光PAH从颗粒表面转移到细胞膜,穿过膜进入细胞质溶胶,并似乎积聚在脂质小泡中。没有证据表明BDS颗粒进入细胞。结果表明,靶细胞摄取空气中的超细颗粒对于将有毒物质从颗粒转移到细胞并非必要。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/084d/1280333/a6d7c5ad5e4e/ehp0113-000956f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验