Murphy Gleeson, Rouse Rodney L, Polk William W, Henk William G, Barker Steven A, Boudreaux Marc J, Floyd Z Elizabeth, Penn Arthur L
Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Skip Bertman Drive, Baton Rouge, LA 70803, USA.
Am J Respir Cell Mol Biol. 2008 May;38(5):532-40. doi: 10.1165/rcmb.2007-0204OC. Epub 2007 Dec 13.
Combustion-generated radicals interact to form polynuclear aromatic hydrocarbons (PAHs), including carcinogens. PAHs aggregate into 20- to 50-nm particles, which extend into branched-chain structures (soots). Incomplete combustion yields black soot particles and black smoke. Many PAHs, including those in soots, fluoresce upon excitation. We have reported that butadiene soot (BDS), generated during combustion of the high-volume petrochemical 1,3-butadiene, serves as a reproducible example of combustion-derived fine and ultrafine particles, with the potential for acute or delayed health effects. Human bronchoepithelial cells (BEAS-2B) display time- and concentration-dependent responses to BDS exposure, culminating in concentration of fluorescent PAHs within discrete cytoplasmic bodies. Here we identify the cytoplasmic compartment(s) in which combustion-derived PAHs concentrate and assess the metabolic responses associated with this compartmentalization. BDS-associated fluorescence colocalized with a red fluorescent cholesterol analog and a transfected plasmid coding for a fluorescent lipid droplet surface protein within BEAS-2B cells. After BDS exposure, murine alveolar macrophages (MH-S) and adipocytes (3T3-L1) also develop fluorescence. These findings, especially within adipocytes, support the accumulation of PAHs within lipid droplets. Microarray data revealed up-regulation of aryl hydrocarbon receptor-induced Phase I biotransformation enzymes and nuclear erythroid-2 related factor 2-mediated oxidative stress responses in BEAS-2B cells. Quantitative RT-PCR results confirmed a time-dependent up-regulation of Phase I biotransformation enzymes (CYP1A1, CYP1B1, and ALDH3A1) in BDS-exposed BEAS-2B and MH-S cells. Thus, respiratory cell lipid droplets concentrate PAHs delivered by combustion-derived ultrafine particles. These PAHs, including several found in BDS and in cigarette smoke, activate xenobiotic metabolism pathways and thereby potentiate their toxicity.
燃烧产生的自由基相互作用形成多环芳烃(PAHs),其中包括致癌物。多环芳烃聚集成20至50纳米的颗粒,这些颗粒延伸成支链结构(烟灰)。不完全燃烧会产生黑色烟灰颗粒和黑烟。许多多环芳烃,包括烟灰中的多环芳烃,在受到激发时会发出荧光。我们曾报道,高产量石化产品1,3 - 丁二烯燃烧过程中产生的丁二烯烟灰(BDS),是燃烧衍生的细颗粒和超细颗粒的一个可重复实例,具有急性或延迟健康影响的可能性。人支气管上皮细胞(BEAS - 2B)对BDS暴露表现出时间和浓度依赖性反应,最终导致荧光多环芳烃在离散的细胞质小体中聚集。在这里,我们确定燃烧衍生的多环芳烃聚集的细胞质区室,并评估与这种区室化相关的代谢反应。BDS相关荧光与红色荧光胆固醇类似物以及编码BEAS - 2B细胞内荧光脂滴表面蛋白的转染质粒共定位。BDS暴露后,小鼠肺泡巨噬细胞(MH - S)和脂肪细胞(3T3 - L1)也产生荧光。这些发现,尤其是在脂肪细胞中的发现,支持了多环芳烃在脂滴中的积累。微阵列数据显示,BEAS - 2B细胞中芳烃受体诱导的I相生物转化酶和核红细胞2相关因子2介导的氧化应激反应上调。定量逆转录 - 聚合酶链反应结果证实,暴露于BDS的BEAS - 2B和MH - S细胞中I相生物转化酶(CYP1A1、CYP1B1和ALDH3A1)呈时间依赖性上调。因此,呼吸道细胞脂滴会聚集燃烧衍生的超细颗粒所携带的多环芳烃。这些多环芳烃,包括在BDS和香烟烟雾中发现的几种,会激活外源性物质代谢途径,从而增强其毒性。