Suppr超能文献

用包覆有磁铁矿纳米颗粒的微生物细胞对二苯并噻吩进行生物脱硫

Biodesulfurization of dibenzothiophene by microbial cells coated with magnetite nanoparticles.

作者信息

Shan GuoBin, Xing JianMin, Zhang HuaiYing, Liu HuiZhou

机构信息

Laboratory of Separation Science and Engineering, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, P.O. Box No. 353, Beijing, 100080 China.

出版信息

Appl Environ Microbiol. 2005 Aug;71(8):4497-502. doi: 10.1128/AEM.71.8.4497-4502.2005.

Abstract

Microbial cells of Pseudomonas delafieldii were coated with magnetic Fe3O4 nanoparticles and then immobilized by external application of a magnetic field. Magnetic Fe3O4 nanoparticles were synthesized by a coprecipitation method followed by modification with ammonium oleate. The surface-modified Fe3O4 nanoparticles were monodispersed in an aqueous solution and did not precipitate in over 18 months. Using transmission electron microscopy (TEM), the average size of the magnetic particles was found to be in the range from 10 to 15 nm. TEM cross section analysis of the cells showed further that the Fe3O4 nanoparticles were for the most part strongly absorbed by the surfaces of the cells and coated the cells. The coated cells had distinct superparamagnetic properties. The magnetization (delta(s)) was 8.39 emu.g(-1). The coated cells not only had the same desulfurizing activity as free cells but could also be reused more than five times. Compared to cells immobilized on Celite, the cells coated with Fe3O4 nanoparticles had greater desulfurizing activity and operational stability.

摘要

将德氏假单胞菌的微生物细胞用磁性Fe3O4纳米颗粒包覆,然后通过施加外部磁场进行固定。磁性Fe3O4纳米颗粒通过共沉淀法合成,随后用油酸铵进行改性。表面改性的Fe3O4纳米颗粒在水溶液中呈单分散状态,在超过18个月的时间里都没有沉淀。使用透射电子显微镜(TEM)发现,磁性颗粒的平均尺寸在10到15纳米范围内。对细胞的TEM横截面分析进一步表明,Fe3O4纳米颗粒大部分被细胞表面强烈吸附并包覆在细胞上。包覆后的细胞具有明显的超顺磁性。磁化强度(δ(s))为8.39 emu·g(-1)。包覆后的细胞不仅具有与游离细胞相同的脱硫活性,而且还可以重复使用超过五次。与固定在硅藻土上的细胞相比,包覆有Fe3O4纳米颗粒的细胞具有更高的脱硫活性和操作稳定性。

相似文献

1
Biodesulfurization of dibenzothiophene by microbial cells coated with magnetite nanoparticles.
Appl Environ Microbiol. 2005 Aug;71(8):4497-502. doi: 10.1128/AEM.71.8.4497-4502.2005.
2
In situ magnetic separation and immobilization of dibenzothiophene-desulfurizing bacteria.
Bioresour Technol. 2009 Nov;100(21):5092-6. doi: 10.1016/j.biortech.2009.05.064. Epub 2009 Jun 21.
3
Biodesulfurization using Pseudomonas delafieldii in magnetic polyvinyl alcohol beads.
Lett Appl Microbiol. 2005;40(1):30-6. doi: 10.1111/j.1472-765X.2004.01617.x.
5
Immobilization of Pseudomonas delafieldii with magnetic polyvinyl alcohol beads and its application in biodesulfurization.
Biotechnol Lett. 2003 Dec;25(23):1977-81. doi: 10.1023/b:bile.0000004388.15751.8c.
7
Desulfurization with Thialkalivibrio versutus immobilized on magnetic nanoparticles modified with 3-aminopropyltriethoxysilane.
Biotechnol Lett. 2017 Jun;39(6):865-871. doi: 10.1007/s10529-017-2317-2. Epub 2017 Mar 15.
9
Synthesis and characterization of biocompatible Fe3O4 nanoparticles.
J Biomed Mater Res A. 2007 Feb;80(2):333-41. doi: 10.1002/jbm.a.30909.

引用本文的文献

2
Mechanistic and recent updates in nano-bioremediation for developing green technology to alleviate agricultural contaminants.
Int J Environ Sci Technol (Tehran). 2022 Sep 29:1-26. doi: 10.1007/s13762-022-04560-7.
4
Degradation of SY095 modified with functional magnetic FeO nanoparticles.
R Soc Open Sci. 2021 Dec 22;8(12):211172. doi: 10.1098/rsos.211172. eCollection 2021 Dec.
6
Bioremediation of Crude Oil by Rhizosphere Fungal Isolates in the Presence of Silver Nanoparticles.
Int J Environ Res Public Health. 2020 Sep 9;17(18):6564. doi: 10.3390/ijerph17186564.
7
Effects of Modified Magnetite Nanoparticles on Bacterial Cells and Enzyme Reactions.
Nanomaterials (Basel). 2020 Jul 30;10(8):1499. doi: 10.3390/nano10081499.
8
DBT desulfurization by decorating IGTS8 using magnetic FeO nanoparticles in a bioreactor.
Eng Life Sci. 2016 Dec 21;17(5):528-535. doi: 10.1002/elsc.201600080. eCollection 2017 May.
9
Investigation of Desulfurization Activity, Reusability, and Viability of Magnetite Coated Bacterial Cells.
Iran J Biotechnol. 2019 Apr 20;17(2):e2108. doi: 10.21859/ijb.2108. eCollection 2019 Apr.
10
Biofilm inhibition, modulation of virulence and motility properties by FeOOH nanoparticle in Pseudomonas aeruginosa.
Braz J Microbiol. 2019 Jul;50(3):791-805. doi: 10.1007/s42770-019-00108-z. Epub 2019 Jun 27.

本文引用的文献

1
A new continuous biofilm bioreactor for immobilized oil-degrading filamentous fungi.
Biotechnol Bioeng. 1996 Jan 5;49(1):20-5. doi: 10.1002/(SICI)1097-0290(19960105)49:1<20::AID-BIT3>3.0.CO;2-V.
2
Cell immobilization using PVA crosslinked with boric acid.
Biotechnol Bioeng. 1992 Feb 20;39(4):447-9. doi: 10.1002/bit.260390411.
3
Immobilized cell cross-flow reactor.
Biotechnol Bioeng. 1984 Mar;26(3):217-20. doi: 10.1002/bit.260260304.
4
Immobilization of Pseudomonas delafieldii with magnetic polyvinyl alcohol beads and its application in biodesulfurization.
Biotechnol Lett. 2003 Dec;25(23):1977-81. doi: 10.1023/b:bile.0000004388.15751.8c.
5
Enzymes immobilized on magnetic carriers: efficient and selective system for protein modification.
J Chromatogr B Analyt Technol Biomed Life Sci. 2002 Apr 25;770(1-2):177-81. doi: 10.1016/s1570-0232(02)00037-5.
6
Long-term repeated biodesulfurization by immobilized Rhodococcus erythropolis KA2-5-1 cells.
Appl Microbiol Biotechnol. 2001 Apr;55(3):374-8. doi: 10.1007/s002530000527.
7
Bioencapsulation within synthetic polymers (Part 1): sol-gel encapsulated biologicals.
Trends Biotechnol. 2000 Jul;18(7):282-96. doi: 10.1016/s0167-7799(00)01457-8.
8
Desulfurization of light gas oil in immobilized-cell systems of Gordona sp. CYKS1 and Nocardia sp. CYKS2.
FEMS Microbiol Lett. 2000 Jan 15;182(2):309-12. doi: 10.1111/j.1574-6968.2000.tb08913.x.
10
Biodesulfurization.
Curr Opin Microbiol. 1999 Jun;2(3):257-64. doi: 10.1016/S1369-5274(99)80045-9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验