Worsley Keith J, Chen Jen-I, Lerch Jason, Evans Alan C
Department of Mathematics and Statistics, McGill University, Montreal, Canada.
Philos Trans R Soc Lond B Biol Sci. 2005 May 29;360(1457):913-20. doi: 10.1098/rstb.2005.1637.
We compare two common methods for detecting functional connectivity: thresholding correlations and singular value decomposition (SVD). We find that thresholding correlations are better at detecting focal regions of correlated voxels, whereas SVD is better at detecting extensive regions of correlated voxels. We apply these results to resting state networks in an fMRI dataset to look for connectivity in cortical thickness.
相关性阈值化和奇异值分解(SVD)。我们发现,相关性阈值化在检测相关体素的焦点区域方面表现更好,而奇异值分解在检测相关体素的广泛区域方面表现更好。我们将这些结果应用于功能磁共振成像(fMRI)数据集中的静息态网络,以寻找皮质厚度的连接性。