Suppr超能文献

最小生物的结构基因组学与蛋白质折叠空间

Structural genomics of minimal organisms and protein fold space.

作者信息

Kim Sung-Hou, Shin Dong Hae, Liu Jinyu, Oganesyan Vaheh, Chen Shengfeng, Xu Qian Steven, Kim Jeong-Sun, Das Debanu, Schulze-Gahmen Ursula, Holbrook Stephen R, Holbrook Elizabeth L, Martinez Bruno A, Oganesyan Natalia, DeGiovanni Andy, Lou Yun, Henriquez Marlene, Huang Candice, Jancarik Jaru, Pufan Ramona, Choi In-Geol, Chandonia John-Marc, Hou Jingtong, Gold Barbara, Yokota Hisao, Brenner Steven E, Adams Paul D, Kim Rosalind

机构信息

Department of Chemistry, University of California, Berkeley, 94720-5230, USA.

出版信息

J Struct Funct Genomics. 2005;6(2-3):63-70. doi: 10.1007/s10969-005-2651-9.

Abstract

The initial aim of the Berkeley Structural Genomics Center is to obtain a near-complete structural complement of two minimal organisms, closely related pathogens Mycoplasma genitalium and M. pneumoniae. The former has fewer than 500 genes and the latter fewer than 700 genes. To achieve this goal, the current protein targets have been selected starting with those predicted to be most tractable and likely to yield new structural and functional information. During the past 3 years, the semi-automated structural genomics pipeline has been set up from cloning, expression, purification, and ultimately to structural determination. The results from the pipeline substantially increased the coverage of the protein fold space of M. pneumoniae and M. genitalium. Furthermore, about 1/2 of the structures of 'unique' protein sequences revealed new and novel folds, and over 2/3 of the structures of previously annotated 'hypothetical proteins' inferred their molecular functions.

摘要

伯克利结构基因组学中心的最初目标是获得两种最小生物体近乎完整的结构补充,这两种生物体是密切相关的病原体——生殖支原体和肺炎支原体。前者拥有不到500个基因,后者拥有不到700个基因。为实现这一目标,目前已从那些预计最易处理且可能产生新的结构和功能信息的蛋白质靶点中进行了选择。在过去3年里,已建立了从克隆、表达、纯化到最终结构测定的半自动结构基因组学流程。该流程的结果大幅增加了肺炎支原体和生殖支原体蛋白质折叠空间的覆盖范围。此外,约二分之一的“独特”蛋白质序列结构揭示了新的折叠方式,超过三分之二的先前注释为“假设蛋白质”的结构推断出了它们的分子功能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验