Suppr超能文献

严重急性呼吸综合征相关冠状病毒的分子流行病学,北京

Molecular epidemiology of SARS-associated coronavirus, Beijing.

作者信息

Liu Wei, Tang Fang, Fontanet Arnaud, Zhan Lin, Wang Tian-Bao, Zhang Pan-He, Luan Yi-He, Cao Chao-Yang, Zhao Qiu-Min, Wu Xiao-Ming, Xin Zhong-Tao, Zuo Shu-Qing, Baril Laurence, Vabret Astrid, Shao Yi-Ming, Yang Hong, Cao Wu-Chun

机构信息

Beijing Institute of Microbiology and Epidemiology, Beijing, People's Republic of China.

出版信息

Emerg Infect Dis. 2005 Sep;11(9):1420-4. doi: 10.3201/eid1109.040773.

Abstract

Single nucleotide variations (SNVs) at 5 loci (17564, 21721, 22222, 23823, and 27827) were used to define the molecular epidemiologic characteristics of severe acute respiratory syndrome-associated coronavirus (SARS-CoV) from Beijing patients. Five fragments targeted at the SNV loci were amplified directly from clinical samples by using reverse transcription-polymerase chain reaction (RT-PCR), before sequencing the amplified products. Analyses of 45 sequences obtained from 29 patients showed that the GGCTC motif dominated among samples collected from March to early April 2003; the TGTTT motif predominanted afterwards. The switch from GGCTC to TGTTT was observed among patients belonging to the same cluster, which ruled out the possibility of the coincidental superposition of 2 epidemics running in parallel in Beijing. The Beijing isolates underwent the same change pattern reported from Guangdong Province. The same series of mutations occurring in separate geographic locations and at different times suggests a dominant process of viral adaptation to the host.

摘要

利用5个位点(17564、21721、22222、23823和27827)的单核苷酸变异(SNV)来确定北京患者中严重急性呼吸综合征相关冠状病毒(SARS-CoV)的分子流行病学特征。在对扩增产物进行测序之前,通过逆转录-聚合酶链反应(RT-PCR)直接从临床样本中扩增出靶向SNV位点的5个片段。对从29例患者中获得的45个序列的分析表明,在2003年3月至4月初采集的样本中,GGCTC基序占主导地位;之后TGTTT基序占主导。在属于同一簇的患者中观察到了从GGCTC到TGTTT的转变,这排除了北京同时并行发生2起疫情偶然叠加的可能性。北京分离株呈现出与广东省报告的相同变化模式。在不同地理位置和不同时间发生的相同系列突变表明病毒对宿主的适应是一个主导过程。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a9c8/3310602/32ace31dacd9/04-0773-F.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验