Suppr超能文献

磁性纳米颗粒在小鼠体内的毒性及组织分布

Toxicity and tissue distribution of magnetic nanoparticles in mice.

作者信息

Kim Jun Sung, Yoon Tae-Jong, Yu Kyeong Nam, Kim Byung Gul, Park Sung Jin, Kim Hyun Woo, Lee Kee Ho, Park Seung Bum, Lee Jin-Kyu, Cho Myung Haing

机构信息

Laboratory of Toxicology, College of Veterinary Medicine and School of Agricultural Biotechnology, Seoul National University, Seoul 151-742, Korea.

出版信息

Toxicol Sci. 2006 Jan;89(1):338-47. doi: 10.1093/toxsci/kfj027. Epub 2005 Oct 19.

Abstract

The development of technology enables the reduction of material size in science. The use of particle reduction in size from micro to nanoscale not only provides benefits to diverse scientific fields but also poses potential risks to humans and the environment. For the successful application of nanomaterials in bioscience, it is essential to understand the biological fate and potential toxicity of nanoparticles. The aim of this study was to evaluate the biological distribution as well as the potential toxicity of magnetic nanoparticles to enable their diverse applications in life science, such as drug development, protein detection, and gene delivery. We recently synthesized biocompatible silica-overcoated magnetic nanoparticles containing rhodamine B isothiocyanate (RITC) within a silica shell of controllable thickness [MNPs@SiO2(RITC)]. In this study, the MNPs@SiO2(RITC) with 50-nm thickness were used as a model nanomaterial. After intraperitoneal administration of MNPs@SiO2(RITC) for 4 weeks into mice, the nanoparticles were detected in the brain, indicating that such nanosized materials can penetrate blood-brain barrier (BBB) without disturbing its function or producing apparent toxicity. After a 4-week observation, MNPs@SiO2(RITC) was still present in various organs without causing apparent toxicity. Taken together, our results demonstrated that magnetic nanoparticles of 50-nm size did not cause apparent toxicity under the experimental conditions of this study.

摘要

技术的发展使得科学领域中材料尺寸得以减小。将颗粒尺寸从微米级减小到纳米级的应用,不仅给多个科学领域带来了益处,同时也给人类和环境带来了潜在风险。为了纳米材料能在生物科学中成功应用,了解纳米颗粒的生物归宿和潜在毒性至关重要。本研究的目的是评估磁性纳米颗粒的生物分布及其潜在毒性,以使其能在生命科学中得到广泛应用,如药物研发、蛋白质检测和基因递送。我们最近合成了一种生物相容性的二氧化硅包覆磁性纳米颗粒,其在可控厚度的二氧化硅壳内含有异硫氰酸罗丹明B(RITC)[MNPs@SiO2(RITC)]。在本研究中,使用厚度为50纳米的MNPs@SiO2(RITC)作为模型纳米材料。将MNPs@SiO2(RITC)腹腔注射给小鼠4周后,在大脑中检测到了纳米颗粒,这表明这种纳米尺寸的材料能够穿透血脑屏障(BBB),且不会干扰其功能或产生明显毒性。经过4周的观察,MNPs@SiO2(RITC)仍存在于各个器官中,且未引起明显毒性。综上所述,我们的结果表明,在本研究的实验条件下,50纳米尺寸的磁性纳米颗粒不会引起明显毒性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验