Chen Hsien-Yeh, Lahann Joerg
Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA.
Anal Chem. 2005 Nov 1;77(21):6909-14. doi: 10.1021/ac050964e.
In this report, we introduce a surface modification method for the fabrication of discontinuous surface patterns within microfluidic systems. The method is based on chemical vapor deposition (CVD) of a photodefinable coating, poly(4-benzoyl-p-xylylene-co-p-xylylene), onto the luminal surface of a microfluidic device followed by a photopatterning step to initiate spatially controlled surface binding. During photopatterning, light-reactive groups of the CVD polymer spontaneously react with molecules adjunct to the surface, such as poly(ethylene oxide). We demonstrate the potential of these reactive polymers for surface modification by preventing nonspecific protein adsorption on different substrates including silicon and poly(dimethylsiloxane) as measured by fluorescence microscopy. More importantly, three-dimensional patterns have successfully been created within polymer-based microfluidic channels, establishing spatially controlled, bioinert surfaces. The herein reported surface modification method addresses a critical challenge with respect to surface engineering of microfluidic devices, namely, the fabrication of discontinuous patterns within microchannels.
在本报告中,我们介绍了一种用于在微流体系统中制造不连续表面图案的表面改性方法。该方法基于将可光定义涂层聚(4-苯甲酰基对二甲苯-co-对二甲苯)通过化学气相沉积(CVD)到微流体装置的管腔表面上,随后进行光图案化步骤以引发空间控制的表面结合。在光图案化过程中,CVD聚合物的光反应性基团会自发地与诸如聚环氧乙烷等附着在表面的分子发生反应。通过荧光显微镜测量,我们证明了这些反应性聚合物在不同底物(包括硅和聚二甲基硅氧烷)上防止非特异性蛋白质吸附的表面改性潜力。更重要的是,已成功在基于聚合物的微流体通道内创建了三维图案,从而建立了空间可控的生物惰性表面。本文报道的表面改性方法解决了微流体装置表面工程方面的一个关键挑战,即在微通道内制造不连续图案。