Water Resources Division, U.S. Geological Survey, Menlo Park, California 94025.
Appl Environ Microbiol. 1986 Nov;52(5):1031-6. doi: 10.1128/aem.52.5.1031-1036.1986.
Anaerobic San Francisco Bay salt marsh sediments rapidly metabolized [C]dimethylselenide (DMSe) to CH(4) and CO(2). Addition of selective inhibitors (2-bromoethanesulfonic acid or molybdate) to these sediments indicated that both methanogenic and sulfate-respiring bacteria could degrade DMSe to gaseous products. However, sediments taken from the selenium-contaminated Kesterson Wildlife Refuge produced only CO(2) from [C]DMSe, implying that methanogens were not important in the Kesterson samples. A pure culture of a dimethylsulfide (DMS)-grown methylotrophic methanogen converted [C]DMSe to CH(4) and CO(2). However, the organism could not grow on DMSe. Addition of DMS to either sediments or the pure culture retarded the metabolism of DMSe. This effect appeared to be caused by competitive inhibition, thereby indicating a common enzyme system for DMS and DMSe metabolism. DMSe appears to be degraded as part of the DMS pool present in anoxic environments. These results suggest that methylotrophic methanogens may demethylate methylated forms of other metals and metalloids found in nature.
厌氧的旧金山湾盐沼沉积物能迅速将[C]二甲基硒化物(DMSe)代谢为 CH(4) 和 CO(2)。向这些沉积物中添加选择性抑制剂(2-溴乙磺酸或钼酸盐)表明,产甲烷菌和硫酸盐还原菌都能将 DMSe 降解为气态产物。然而,取自受硒污染的凯瑟森野生动物保护区的沉积物仅从[C]DMSe 中产生 CO(2),这意味着产甲烷菌在凯瑟森样品中并不重要。一种纯培养的二甲基硫(DMS)生长的甲基营养型产甲烷菌将[C]DMSe 转化为 CH(4) 和 CO(2)。然而,该生物体不能以 DMSe 为食。DMS 的添加无论是在沉积物还是纯培养物中,都能减缓 DMSe 的代谢。这种影响似乎是由竞争性抑制引起的,从而表明 DMS 和 DMSe 代谢存在共同的酶系统。DMSe 似乎是作为缺氧环境中存在的 DMS 池的一部分被降解的。这些结果表明,甲基营养型产甲烷菌可能会使自然界中发现的其他金属和类金属的甲基化形式脱甲基。