Suppr超能文献

天然工程化糖脂生物表面活性剂形成独特的自组装结构。

Naturally engineered glycolipid biosurfactants leading to distinctive self-assembled structures.

作者信息

Imura Tomohiro, Ohta Noboru, Inoue Katsuaki, Yagi Naoto, Negishi Hideyuki, Yanagishita Hiroshi, Kitamoto Dai

机构信息

Research Institute for Innovation in Sustainable Chemistry, National Institute of Advanced Industrial Science and Technology, Tsukuba Central 5-2, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan.

出版信息

Chemistry. 2006 Mar 8;12(9):2434-40. doi: 10.1002/chem.200501199.

Abstract

Self-assembling properties of "natural" glycolipid biosurfactants, mannosyl-erythritol lipids A and B (MEL-A, MEL-B), which are abundantly produced from yeast strains, were investigated by using the fluorescence-probe method, dynamic light-scattering (DLS) analysis, freeze-fracture transmission electron microscopy (FF-TEM), and synchrotron small/wide-angle X-ray scattering (SAXS/WAXS) analysis, among other methods. Both MEL-A and MEL-B exhibit excellent self-assembly properties at extremely low concentrations; they self-assemble into large unilamellar vesicles (LUV) just above their critical-aggregation concentration (CAC). The CAC(I) value was found to be 4.0x10(-6) M for MEL-A and 6.0x10(-6) M for MEL-B. Moreover, the self-assembled structure of MEL-A above a CAC(II) value of 2.0x10(-5) M was found to drastically change into sponge structures (L3) composed of a network of randomly connected bilayers that are usually obtained from a complicated multicomponent "synthetic" surfactant system. Interestingly, the average water-channel diameter of the sponge structure was 100 nm. This is relatively large compared with those obtained from "synthetic" surfactant systems. In addition, MEL-B, which has a hydroxyl group at the C-4' position on mannose instead of an acetyl group, gives only one CAC; the self-assembled structure of MEL-B seems to gradually move from LUV to multilamellar vesicles (MLV) with lattice constants of 4.4 nm, depending on the concentration. Furthermore, the lyotropic-liquid-crystal-phase observation at high concentrations demonstrates the formation of an inverted hexagonal phase (H2) for MEL-A, together with a lamella phase (L(alpha)) for MEL-B, indicating a difference between MEL-A and MEL-B molecules in the spontaneous curvature of the assemblies. These results clearly show that the difference in spontaneous curvature caused by the single acetyl group on the head group probably decides the direction of self-assembly of glycolipid biosurfactants. The unique and complex molecular structures with several chiral centers that are molecularly engineered by microorganisms must have led to the sophisticated self-assembling properties of the glycolipid biosurfactants.

摘要

通过荧光探针法、动态光散射(DLS)分析、冷冻断裂透射电子显微镜(FF-TEM)以及同步加速器小角/广角X射线散射(SAXS/WAXS)分析等方法,对从酵母菌株中大量产生的“天然”糖脂生物表面活性剂甘露糖基赤藓糖醇脂A和B(MEL-A、MEL-B)的自组装特性进行了研究。MEL-A和MEL-B在极低浓度下均表现出优异的自组装特性;它们在略高于其临界聚集浓度(CAC)时自组装成大单层囊泡(LUV)。发现MEL-A的CAC(I)值为4.0×10⁻⁶ M,MEL-B的为6.0×10⁻⁶ M。此外,发现当MEL-A的浓度高于2.0×10⁻⁵ M的CAC(II)值时,其自组装结构会急剧转变为海绵状结构(L3),该结构由通常从复杂的多组分“合成”表面活性剂体系中获得的随机连接双层网络组成。有趣的是,海绵状结构的平均水通道直径为100 nm。与从“合成”表面活性剂体系中获得的水通道直径相比,这个值相对较大。此外,在甘露糖的C-4'位置具有羟基而非乙酰基的MEL-B仅给出一个CAC;MEL-B的自组装结构似乎会根据浓度从LUV逐渐转变为晶格常数为4.4 nm的多层囊泡(MLV)。此外,在高浓度下的溶致液晶相观察表明,MEL-A形成了反相六角相(H2),而MEL-B形成了层状相(L(α)),这表明MEL-A和MEL-B分子在组装体的自发曲率方面存在差异。这些结果清楚地表明,头部基团上单个乙酰基引起的自发曲率差异可能决定了糖脂生物表面活性剂的自组装方向。微生物通过分子工程设计的具有多个手性中心的独特而复杂的分子结构,必定导致了糖脂生物表面活性剂复杂的自组装特性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验