Somogyi R B, Vesely A E, Preiss D, Prisman E, Volgyesi G, Azami T, Iscoe S, Fisher J A, Sasano H
University Health Network, Toronto General Hospital, University of Toronto, Department of Physiology, Queen's University, Kingston, Canada.
Anaesth Intensive Care. 2005 Dec;33(6):726-32. doi: 10.1177/0310057X0503300604.
Anaesthesiologists have traditionally been consulted to help design breathing circuits to attain and maintain target end-tidal carbon dioxide (P(ET)CO2). The methodology has recently been simplified by breathing circuits that sequentially deliver fresh gas (not containing carbon dioxide (CO2)) and reserve gas (containing CO2). Our aim was to determine the roles of fresh gas flow, reserve gas PCO2 and minute ventilation in the determination of P(ET)CO2. We first used a computer model of a non-rebreathing sequential breathing circuit to determine these relationships. We then tested our model by monitoring P(ET)CO2 in human volunteers who increased their minute ventilation from resting to five times resting levels. The optimal settings to maintain P(ET)CO2 independently of minute ventilation are 1) fresh gas flow equal to minute ventilation minus anatomical deadspace ventilation, and 2) reserve gas PCO2 equal to alveolar PCO2. We provide an equation to assist in identifying gas settings to attain a target PCO2. The ability to precisely attain and maintain a target PCO2 (isocapnia) using a sequential gas delivery circuit has multiple therapeutic and scientific applications.
传统上,麻醉医生会参与设计呼吸回路,以实现并维持目标呼气末二氧化碳分压(P(ET)CO2)。最近,通过依次输送新鲜气体(不含二氧化碳(CO2))和储备气体(含CO2)的呼吸回路,该方法得到了简化。我们的目的是确定新鲜气体流量、储备气体PCO2和分钟通气量在P(ET)CO2测定中的作用。我们首先使用一个非再呼吸式顺序呼吸回路的计算机模型来确定这些关系。然后,我们通过监测人类志愿者从静息状态增加到静息水平五倍的分钟通气量时的P(ET)CO2来测试我们的模型。独立于分钟通气量维持P(ET)CO2的最佳设置为:1)新鲜气体流量等于分钟通气量减去解剖无效腔通气量;2)储备气体PCO2等于肺泡PCO2。我们提供了一个方程,以帮助确定实现目标PCO2的气体设置。使用顺序气体输送回路精确实现并维持目标PCO2(等碳酸血症)的能力具有多种治疗和科学应用。