Suppr超能文献

赖特-费雪过程中的进化博弈动力学

Evolutionary game dynamics in a Wright-Fisher process.

作者信息

Imhof Lorens A, Nowak Martin A

机构信息

Statistische Abteilung, Universität Bonn, Germany.

出版信息

J Math Biol. 2006 May;52(5):667-81. doi: 10.1007/s00285-005-0369-8. Epub 2006 Feb 7.

Abstract

Evolutionary game dynamics in finite populations can be described by a frequency dependent, stochastic Wright-Fisher process. We consider a symmetric game between two strategies, A and B. There are discrete generations. In each generation, individuals produce offspring proportional to their payoff. The next generation is sampled randomly from this pool of offspring. The total population size is constant. The resulting Markov process has two absorbing states corresponding to homogeneous populations of all A or all B. We quantify frequency dependent selection by comparing the absorption probabilities to the corresponding probabilities under random drift. We derive conditions for selection to favor one strategy or the other by using the concept of total positivity. In the limit of weak selection, we obtain the 1/3 law: if A and B are strict Nash equilibria then selection favors replacement of B by A, if the unstable equilibrium occurs at a frequency of A which is less than 1/3.

摘要

有限种群中的进化博弈动态可以用频率依赖的随机赖特 - 费希尔过程来描述。我们考虑两种策略A和B之间的对称博弈。存在离散的世代。在每一代中,个体根据其收益产生后代。下一代从这个后代池中随机抽样。种群总数是恒定的。由此产生的马尔可夫过程有两个吸收态,分别对应于全是A或全是B的同质种群。我们通过将吸收概率与随机漂移下的相应概率进行比较来量化频率依赖选择。我们利用全正性的概念推导出选择有利于一种策略而非另一种策略的条件。在弱选择的极限情况下,我们得到1/3定律:如果A和B是严格纳什均衡,那么当A的不稳定均衡频率小于1/3时,选择有利于用A取代B。

相似文献

1
Evolutionary game dynamics in a Wright-Fisher process.
J Math Biol. 2006 May;52(5):667-81. doi: 10.1007/s00285-005-0369-8. Epub 2006 Feb 7.
2
Evolutionary game dynamics of the Wright-Fisher process with different selection intensities.
J Theor Biol. 2019 Mar 21;465:17-26. doi: 10.1016/j.jtbi.2019.01.006. Epub 2019 Jan 8.
3
Moran-type bounds for the fixation probability in a frequency-dependent Wright-Fisher model.
J Math Biol. 2018 Jan;76(1-2):1-35. doi: 10.1007/s00285-017-1137-2. Epub 2017 May 16.
4
On selection in finite populations.
J Math Biol. 2018 Feb;76(3):645-678. doi: 10.1007/s00285-017-1151-4. Epub 2017 Jun 29.
5
Stochastic evolutionary dynamics of bimatrix games.
J Theor Biol. 2010 May 7;264(1):136-42. doi: 10.1016/j.jtbi.2010.01.016. Epub 2010 Jan 21.
6
On the stochastic evolution of finite populations.
J Math Biol. 2017 Dec;75(6-7):1735-1774. doi: 10.1007/s00285-017-1135-4. Epub 2017 May 10.
7
Evolutionary game dynamics in finite populations with strong selection and weak mutation.
Theor Popul Biol. 2006 Nov;70(3):352-63. doi: 10.1016/j.tpb.2006.07.006. Epub 2006 Aug 12.
8
Wright-Fisher model of social insects with haploid males and diploid females.
J Theor Biol. 2010 Oct 7;266(3):470-8. doi: 10.1016/j.jtbi.2010.07.005. Epub 2010 Jul 13.
9
Evolutionary dynamics of finite populations in games with polymorphic fitness equilibria.
J Theor Biol. 2007 Aug 7;247(3):426-41. doi: 10.1016/j.jtbi.2007.03.004. Epub 2007 Mar 12.
10
Mutation-selection equilibrium in games with multiple strategies.
J Theor Biol. 2009 Jun 21;258(4):614-22. doi: 10.1016/j.jtbi.2009.02.010. Epub 2009 Feb 24.

引用本文的文献

2
3
Analyzing reciprocity dynamics in supply chains of public goods: a stochastic evolutionary game approach.
PeerJ Comput Sci. 2024 Jun 26;10:e2118. doi: 10.7717/peerj-cs.2118. eCollection 2024.
4
Symmetry in models of natural selection.
J R Soc Interface. 2023 Nov;20(208):20230306. doi: 10.1098/rsif.2023.0306. Epub 2023 Nov 15.
5
Extinction scenarios in evolutionary processes: a multinomial Wright-Fisher approach.
J Math Biol. 2023 Sep 26;87(4):63. doi: 10.1007/s00285-023-01993-7.
6
Mutation enhances cooperation in direct reciprocity.
Proc Natl Acad Sci U S A. 2023 May 16;120(20):e2221080120. doi: 10.1073/pnas.2221080120. Epub 2023 May 8.
8
The future of theoretical evolutionary game theory.
Philos Trans R Soc Lond B Biol Sci. 2023 May 8;378(1876):20210508. doi: 10.1098/rstb.2021.0508. Epub 2023 Mar 20.
9
Diversity enables the jump towards cooperation for the Traveler's Dilemma.
Sci Rep. 2023 Jan 25;13(1):1441. doi: 10.1038/s41598-023-28600-5.
10
Characterizing viral within-host diversity in fast and non-equilibrium demo-genetic dynamics.
Front Microbiol. 2022 Oct 5;13:983938. doi: 10.3389/fmicb.2022.983938. eCollection 2022.

本文引用的文献

1
Evolutionary game dynamics in finite populations with strong selection and weak mutation.
Theor Popul Biol. 2006 Nov;70(3):352-63. doi: 10.1016/j.tpb.2006.07.006. Epub 2006 Aug 12.
2
Evolutionary game dynamics in finite populations.
Bull Math Biol. 2004 Nov;66(6):1621-44. doi: 10.1016/j.bulm.2004.03.004.
3
Emergence of cooperation and evolutionary stability in finite populations.
Nature. 2004 Apr 8;428(6983):646-50. doi: 10.1038/nature02414.
4
Evolutionarily stable strategies for stochastic processes.
Theor Popul Biol. 2004 May;65(3):205-10. doi: 10.1016/j.tpb.2004.01.001.
5
Evolutionary dynamics of biological games.
Science. 2004 Feb 6;303(5659):793-9. doi: 10.1126/science.1093411.
6
Evolutionarily stable strategies for a finite population and a variable contest size.
J Theor Biol. 1988 Jun 22;132(4):469-78. doi: 10.1016/s0022-5193(88)80085-7.
7
A note on evolutionary stable strategies and game dynamics.
J Theor Biol. 1979 Dec 7;81(3):609-12. doi: 10.1016/0022-5193(79)90058-4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验