Imhof Lorens A, Nowak Martin A
Statistische Abteilung, Universität Bonn, Germany.
J Math Biol. 2006 May;52(5):667-81. doi: 10.1007/s00285-005-0369-8. Epub 2006 Feb 7.
Evolutionary game dynamics in finite populations can be described by a frequency dependent, stochastic Wright-Fisher process. We consider a symmetric game between two strategies, A and B. There are discrete generations. In each generation, individuals produce offspring proportional to their payoff. The next generation is sampled randomly from this pool of offspring. The total population size is constant. The resulting Markov process has two absorbing states corresponding to homogeneous populations of all A or all B. We quantify frequency dependent selection by comparing the absorption probabilities to the corresponding probabilities under random drift. We derive conditions for selection to favor one strategy or the other by using the concept of total positivity. In the limit of weak selection, we obtain the 1/3 law: if A and B are strict Nash equilibria then selection favors replacement of B by A, if the unstable equilibrium occurs at a frequency of A which is less than 1/3.
有限种群中的进化博弈动态可以用频率依赖的随机赖特 - 费希尔过程来描述。我们考虑两种策略A和B之间的对称博弈。存在离散的世代。在每一代中,个体根据其收益产生后代。下一代从这个后代池中随机抽样。种群总数是恒定的。由此产生的马尔可夫过程有两个吸收态,分别对应于全是A或全是B的同质种群。我们通过将吸收概率与随机漂移下的相应概率进行比较来量化频率依赖选择。我们利用全正性的概念推导出选择有利于一种策略而非另一种策略的条件。在弱选择的极限情况下,我们得到1/3定律:如果A和B是严格纳什均衡,那么当A的不稳定均衡频率小于1/3时,选择有利于用A取代B。